CAPITULO SEPTIMO

DEFENSA DE SUELOS EN LOS CAFETALES

El progreso y bienestar de la vida misma de la República, descansan primordialmente sobre pocos centímetros de capa vegetal; por lo tanto la conservación del suelo debe ocupar el primer lugar en las preocupaciones de la nación y ningún individuo debiera tener derecho a menos- cabar su integridad y utilidad aun cuando sea de su patrimonio, pues es un interés social a que tienen legítimo derecho las generaciones futuras.

1º Introducción

Si en cada uno de los Departamentos cafeteros del país, donde ya la industria se muestra en decadencia, nos detuviéramos a analizar los factores que más fuertemente han contribuído a ello, sin duda alguna llegaríamos a la conclusión de que el empobrecimiento más o menos acelerado de los suelos y por ende sus productos, se debe a la erosión fomentada por negligencias o ignorancia conque generalmente se han venido formando los cafetales y se han hecho los cuidados posteriores de la plantación.

Las regiones cafeteras de Colombia están localizadas precisamente en terrenos de lederas más o menos escar-
padas donde la acción natural de las aguas, ayudada por las labores inapropiadas que le suministran los cultivadores, son las responsables de la pérdida de la capa vegetal del suelo.

Es común observar que las laderas destinadas al cultivo del cafeto son trabajadas en sentido de la pendiente, se despojan de la cubierta vegetal exponiéndolas a los estragos de las lluvias, vientos y otros agentes; se siembran con maíz, yuca y otros cultivos de los llamados limpios haciendo surcos con dirección a la pendiente y nunca se ha observado que para cultivos de esta naturaleza se tomen medidas preventivas para disminuir la acción fuerte de las aguas de escorrentía, ni proteger el suelo contra el impacto de las aguas lluvias al caer.

Afortunadamente, nuestro común sistema de cultivar el cafeto bajo sombra, ha permitido que las pérdidas de suelo hayan sido más lentas, no propiamente por la protección que proporcionan las copas de los árboles, sino por la cubierta que los despojos del follaje forman en la superficie del suelo, la cual amortigua el impacto de las gotas de agua y retienen parte de ésta. Pero ante la desmedida destrucción que de los árboles de sombrío han hecho los cafeteros para emplearlos como combustible, estamos ya colocados en condiciones de afrontar el problema de la erosión en todos sus aspectos.

Para corregir los errores del pasado, la Federación Nacional de Cafeteros no ha ahorrado esfuerzos ni dinero, para que técnicos nacionales y extranjeros, dedicados al estudio de todos estos problemas agronómicos, desarrollen al máximo sus actividades y después de concienzudos experimentos ofrezcan a los cultivadores los sistemas adecuados para conservar los cafetales duraderamente productivos.
En el presente capítulo se darán los datos obtenidos en materia de pérdidas de suelos, conseguidos en la experimentación en el Centro Nacional de Investigaciones de Café que funciona en Chinchiná (Caldas) y también las recomendaciones generales de los sistemas que los mismos experimentos y las observaciones las prácticas, hechas permanentemente en los cultivos, han demostrado ser las más efectivas.

2° Potencialidad erosiva de las lluvias en los cafetales.

La división de experimentación de la Campaña de Suelos que actúa en el Centro de Chinchiná, ha llevado a efecto un experimento que permite apreciar cual es realmente la acción defensiva contra la erosión de los árboles de sombrío.

En el planeamiento de este experimento, su autor Dr. Fernando Suárez de Castro, hizo las siguientes observaciones sobre la importancia del estudio:

“La erosión de los suelos puede definirse como el proceso de desprendimiento de los materiales del suelo por diversos agentes llamados “Agentes Erosivos”. Hay pues dos fases distintas y subsecuentes en el proceso, la primera es la del desprendimiento de las partículas de la masa del suelo y la segunda, la del transporte de dichas partículas a través de la distancia.

“Todo agente erosivo puede actuar en cualquiera o en ambas fases del proceso con diversa intensidad.

“Las gotas de lluvia que golpean el suelo son un agente que contribuye al proceso erosivo por lo menos en tres formas: en primer lugar desprende partículas de suelo en el sitio que sufre el impacto; en segundo lugar transporta, por salpicamiento, partículas desprendidas, a través del
aire y sobre la superficie del suelo, en tercer lugar imprime energía, en forma de turbulencia, al agua superficial”.

“El agua que corre sobre la superficie de un terreno de manera especial en los minutos iniciales de la escorrentía, ejerce en contraste una acción primordialmente transportadora. Puede desprender partículas cuando ha ingresado a su caudal alguna cantidad de material abrasivo, pero ello a la vez disminuye su capacidad transportadora”.

“Durante un aguacero fuerte varios miles de millones de gotas de agua golpean cada hectárea de terreno, las cuales en muchos casos desprenden y salpican varios cientos de toneladas de partículas de suelo. Muchas de esas partículas pueden ser arrojadas a más de sesenta centímetros de altura y a más de 1.5 metros de distancia del sitio que originalmente ocupaban”.

“La erosión de los suelos en la forma como se definió, puede controlarse evitando que las partículas de suelo se desprendan de la masa a la cual están normalmente adheridas o deteniendo el transporte de esas partículas. Sin embargo, debe tenerse muy en cuenta que al optar por la segunda alternativa no se evitan los daños que sufren los suelos por efectos de la dispersión de sus agregados. De manera que para controlar los efectos perjudiciales de la erosión, es imprescindible eliminar el desprendimiento de partículas que causan las gotas de lluvia al golpear los terrenos descubiertos”.

“De allí que sea muy importante el estudio, bajo diferentes condiciones de la “capacidad desprendedora” de las gotas de lluvia. Para ello es necesario medir la fuerza con que las gotas golpean al suelo”.

“En Colombia el cafeto se cultiva siempre bajo la sombra de árboles de mayor porte. El sombrío tiene indudables efectos benéficos sobre las plantaciones entre los cuales
no es el menor la defensa que proporciona al suelo. En Chinchiná se ha determinado que en un cafetal de más de 20 años de edad, bien sombreado y con una longitud de pendiente de 10 metros se pierden cantidades reducidas de suelo.

Sin embargo, no se tiene hasta el momento una idea clara de la forma como se verifica esa protección y tal conocimiento es indispensable para guiar se en la escogencia de plantas de sombrío”.

“Las causas más generales aceptadas como contribuyentes a la protección que los árboles brindan al suelo son tres:

1° Intercepción directa de las gotas de lluvia por el follaje y disminución de su fuerza erosiva (acción de paraguas).

2° Formación de un colchón de hojas y restos vegetales sobre la superficie del terreno el cual absorbe la fuerza del impacto de las gotas de lluvia.

3° Efecto sujetador del sistema de raíces en las capas superiores del suelo.

Es natural que si el numeral 1 es el más importante, deben preferirse (desde el punto de vista de conservación de suelos), árboles que mantengan un follaje denso durante toda su vida para así incrementar ese trabajo de intercepción. Similarmente, en caso de que la acción defensiva se relacione más preponderantemente con las otras causas, habría necesidad de preferir especies con hábitos de crecimiento muy diferente”.

“El experimento adelantado en Chinchiná pudo encontrar la fuerza comparativa con que las gotas de lluvia golpean el suelo dentro de un cafetal y al aire libre determinando así la capacidad desprendedora de las gotas de lluvia”.
"Según este experimento que fue planeado y llevado a efecto con toda la técnica y cuidados del caso, la mayor potencialidad erosiva de las lluvias dentro del cafetal, fue mucho mayor. es decir, las gotas dentro del cafetal golpean con más fuerza el suelo debajo del follaje de los árboles de sombrío que al aire libre”.

"Con un total de 47 observaciones y 1.377,4 milímetros de lluvia, dentro del cafetal salpicaron 1.535,3 gramos de arena standard, en tanto que al aire libre salpicaron 518,6, es decir, casi la tercera parte”.

Las conclusiones experimentales son las siguientes:

-a) La fuerza con que las gotas de lluvia golpean el suelo o sea su "potencialidad erosiva" es mayor dentro de un cafetal que al aire libre.

-b) La pretendida acción defensiva del sombrío por intercepción directa de las gotas de lluvia (acción de paraguas), no existe y por lo tanto, la comprobada protección que los árboles brindan al suelo, debe atribuirse principalmente a la capa de restos vegetales que depositan sobre el terreno y al efecto sujetador de las raíces.

3º Pérdidas de suelo dentro de los cafetales.

El más alto porcentaje de los cafetales en Colombia, se encuentran en suelos de ladera y de estructura en la mayoría de las veces muy susceptible a la erosión. Estas condiciones afortunadamente han sido contrarrestadas por el adecuado uso del sombrío, el cual proporciona una fuerte cantidad de material orgánico de protección que ha permitido disminuir considerablemente las pérdidas de suelos por erosión.

Pero no obstante, algunas prácticas culturales favorecen en alto grado los arrastres, prácticas que hay necesidad
de modificar para que el caficultor pueda asegurar la conservación de sus suelos.

Una de dichas prácticas culturales de amplio uso en nuestros cafetales, es la desyerba con azadón.

La Campaña de Defensa y Restauración de Suelos de la Federación de Cafeteros en experimentos debidamente controlados en parcelas de escorrentía ha determinado al respecto lo siguiente:

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Suelo Perdido</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Toneladas por hectárea</td>
</tr>
<tr>
<td></td>
<td>1949</td>
</tr>
<tr>
<td>1. Terreno azadoneado cada 3 meses........</td>
<td>327.66 tt.</td>
</tr>
<tr>
<td>2. Terreno macheteado cada 3 meses........</td>
<td>1.31 "</td>
</tr>
<tr>
<td>3. Cafetal joven azadoneado cada 4 meses.......</td>
<td>24.75 "</td>
</tr>
<tr>
<td>4. Cafetal joven con añil rastrero macheteado</td>
<td></td>
</tr>
<tr>
<td>cada 4 meses</td>
<td>0.89 "</td>
</tr>
</tbody>
</table>

Como puede observarse el desyerbo con machete redujo considerablemente las pérdidas de suelo.

4° Prácticas agronómicas y mecánicas que deben llevarse a efecto en los cafetales para defensa de los suelos.

Son varios los sistemas y estructuras que deben ponerse en práctica para conservar los suelos dentro de un cafetal y asegurar la conservación de sus suelos. Dentro de ellos enumeramos los siguientes:

1° Prácticas Agronómicas.— a) Cultivo en Contorno: ya se ha dicho que el más alto porcentaje de nuestros cafetales se encuentra en terrenos de ladera con un fuerte grado de pendiente. Pues bien, para todas las localidades en donde la pendiente sea mayor de un 5%, los sistemas de arado, rastrillada, surcada, siembra, etc. deben ser en lí-
neas de contorno o curvas de nivel, tal como quedó dicho en los sistemas de trazado.

b) Disposición de los cultivos.— La disposición adecuada de los cultivos, es un importante factor para disminuir las pérdidas por erosión de los suelos. Esto significa que los cultivos llamados limpios como la yuca, el maíz, etc. deben sembrarse en los sitios menos pendientes.

Las franjas de pastos, caña y otros que tupan en la superficie del suelo, deben colocarse en la parte inmediatamente inferior a los cultivos limpios a fin de retener el deslave producido.

c) Cultivos intercalados.— El cultivo de añil rastrero (Indigofera endecaphylla), panameña (Zebrina pendula o tradescantia Zebrina Hort y otras especies), coneja Pseudochiloena polystachia (H. B. K. Staft) dentro de los cafetales detienen poderosamente la erosión.

d) Fajas amortiguadoras.— Son franjas o bandas de plantas protectoras del suelo, colocadas al través de la pendiente y destinadas a recibir el escurrimiento de los cultivos, filtrar las aguas superficiales, detener el material erodido y quitar a las aguas sobrantes la velocidad.

e) Desyerbo a machete.— Como quedó ya ampliamente explicado, el desyerbo a machete constituye un magnífico sistema para impedir la erosión.

f) Repoblación del sombrío.— Los árboles adecuados para sombra deben conservarse y repoblarse convenientemente. La protección que dan al suelo por la capa de hojas que forman en su superficie, está ampliamente comprobada constituyendo además una fuente continua de material orgánico para el suelo.

g) Abonamiento con materia orgánica.— La pulpa del café, las basuras, los desperdicios de cocina, el bagazo, las cenizas del trapiche, el estiércol de pesebreras y dormi-
deros de ganado, forman un valioso abono que todo agricultor debe aprovechar. Al abonar el suelo con materia orgánica, se aumentan las cosechas y se ayuda a combatir la erosión, ya que el material orgánico aumenta los coloides en el suelo al mismo tiempo que su capacidad de absorción y retención del agua.

h) Barreras vivas.— Así se llaman los surcos de plantas vivas que en curvas de nivel o al menos en líneas de contorno horizontal, se deben establecer dentro de los cafetales a fin de detener la erosión quitándole velocidad al agua de escorrentía al contener la pérdida del material erosionado y servir de bases futuras para terrazas contínuas. Estas barreras pueden ser hechas con plantas de “limoncillo” (Cymbopogon citratus); “Vetiver” o “Pachulí” (Vetiveria onatherum zizaniados); “Izote” (yuca gloriosa).

i) Rompevientos.— Estos se forman con hiladas sencillas o múltiples de plantas para que defiendan los cafetales contra los fuertes vientos. Los cultivos tupidos de cargarroco, “guandul” y otras plantas, se deben utilizar con estos fines.

j) Bosques familiares.— Estos son útiles para producir las maderas y otros elementos que la hacienda necesita. Los lotes de la propiedad más empinados, los suelos más gastados deben sembrarse con árboles de rápido crecimiento, como los guamos (Ingas), el cañafistulo macho o balero (cassia Sp.) y otros comunes en cada región, son las plantas útiles para estos fines.

2º Prácticas mecánicas o de Ingeniería.— Sdenoninanan así todas aquellas obras en donde hay necesidad de remover suelo o acumular materiales para formar estructuras encaminadas a evitar las pérdidas de suelo por erosión. El hecho de tenerse que remover suelo para la formación de estructuras significa que estas deben meditarse
lo suficiente antes de iniciar su construcción. Debe recordarse permanentemente que nunca debe ejecutarse o recomendarse una práctica mecánica o de ingeniería, si es posible obtener los mismos resultados por medio de sistemas agronómicos sencillos, como los recomendados anteriormente, basados en el uso adecuado de la vegetación y métodos racionales de cultivo.

Cuando sea indispensable el uso de prácticas mecánicas o de ingeniería, deben preferirse las más sencillas y económicas. A un terreno no debe aplicársele más prácticas que las mínimas necesarias para defenderlo, teniendo siempre en mira la eficiencia de la obra, pues nunca por una economía mal entendida, deben dejarse de hacer las obras absolutamente necesarias.

Dentro de las muchas prácticas que de esta naturaleza se utilizan para defender los suelos, figuran las siguientes:

Barreras muertas.— Estas son estructuras que se hacen con material llamado “muerto” y que generalmente se consigue en la localidad así:

a) **Barreras de piedra.**— Donde este material abunda, se emplea para formar con él surcos siguiendo las curvas de nivel del terreno. Estos surcos pueden servir de sostén a bancales que se irán formando lentamente con las labores de cultivo.

b) **Barreras de paja.**— Estas se construyen con materiales que abundan en el terreno, tales como basuras secas, hojarasca, yerbas, troncos, etc. Como estas barreras son de poca duración, se aconseja al hacerlas, sembrarles por la parte inferior plantas leguminosas arbusivas como “carga rocío”; crotalaria, mermeladas de caballo, guandules, etc.; las cuales en lo futuro constituirán barreras vivas; y

c) **Obstáculos.**— Uno de los sistemas más prácticos y
sencillos para disminuir los arrastres del suelo en los cañales, consiste en atravesar en sentido opuesto a la pendiente, todos los troncos, vástagos de plátano, piedras, ramas, malezas, etc.

Protección de desagües naturales.— Las quebradas, chorros, hondonadas y depresiones naturales, reciben durante la época de lluvias grandes cantidades de agua que tienden a erosionar el suelo de los taludes y ahondar el cauce. Esto debe evitarse así:

a) En el fondo y lado de los desagües naturales se dejarán crecer las malezas y pastos espontáneos sin cortarlos;

b) Los sitios más peligrosos se protegerán con escalones de piedra; diques amortiguadores, fajas de césped; y
c) Las guaduas, bambúes, cañabavas, cañas de castilla, etc. se sembrarán en los fondos y lados para amortiguar la velocidad y el impacto de las aguas.

Construcción de desagüe.— Las depresiones naturales de los terrenos inclinados de cultivo sirven de receptáculo y medio de conducción de las aguas que ruedan por la pendiente.

Tales desagües naturales, no deben cultivarse con plantas erosionantes, sino que deben conservarse en forma de potreros o prados bien pastados para evitar la erosión.

Todo sitio en la finca en donde se acumulen las aguas de escurrimiento deben protegerse con pasto, céspedes, amortiguadores, etc., pues es el punto en donde el suelo está en peligro.

Los lugares encharcados deben ser despojados de agua sobrante mediante zajas construidas con poco desnivel para que la conduzcan a partes bien protegidas y que permitan el escurrimiento.

Las aguas de los caminos, carreteras, vías férreas, etc.,
deben conducirse por canales adecuados a sitios donde la escorrentía no cause perjuicios protegiendo convenientemente los desagües forzosos.

Cercas y caminos.— Las cercas y su buen estado, son una garantía de seguridad en la hacienda. El ideal no es el que ellas formen cuadrados, rectángulos, etc., sino que sigan las curvas de nivel para facilitar la defensa de los terrenos dedicados al cultivo.

Los caminos muy pendientes o aquellos que van por la cima de los filos y cerros, son fuentes de grave erosión que termina formando grandes zanjones. Por esta razón estas vías deben trazarse en forma de curvas con poca pendiente y las pendientes críticas deben protegerse con amortiguadores de piedra, madera, etc., los taludes deben recibir la inclinación apropiada y los desagües llevarse a sitios seguros.

Para controlar la erosión en caminos y taludes, deben evitarse las infiltraciones de aguas superiores; mantener abiertas las alcantarillas y cunetas, nunca quitar la vegetación espontánea de los taludes o sembrarlos con plantas apropiadas como añil rastreiro, amindoín y otras comunes como el kikuyo, etc.

Zanjillas de absorción.— Estas estructuras consisten en pequeños surcos hechos con el azadón u otro instrumento semejante siguiendo las líneas de contorno a intervalos regulares. Pueden hacerse en todos los suelos, en los arenosos y en los muy pendientes. Con estas zanjillas se consigue disminuir la velocidad y cantidad de agua erosional; absorción y mantenimiento de la humedad en aquellos lugares habitualmente secos. La poca cantidad de tierra que se moviliza al hacer estas estructuras, se puede contener por medio de barreras vivas hechas en el lado inferior de las zanjillas.
Canales de desviación.— Muchos terrenos inclinados sufren grave erosión debido a la acumulación que sobre ellos se efectúa de las aguas que vienen escurriendo de los predios más altos. Los canales de desviación son las estructuras más efectivas para evitar estos males.

Estos canales tienen una sección transversal en forma de trapecio y debe diseñarse especialmente para las condiciones locales donde van a trabajar, pues es imposible usar tablas uniformes que den las dimensiones exactas, tal como ocurre por ejemplo en las “Acequias de ladera”.

Al determinar la profundidad conveniente para el canal, su inclinación y por ende la velocidad de las aguas, debe tenerse cuidado de que esta velocidad no sobrepase las recomendaciones sobre las velocidades máximas seguras para estructuras de esta índole de acuerdo con la textura de los terrenos. Si se usan velocidades mayores, el resultado será la erosión del fondo del canal y su consiguiente aumento continuo de profundidad. Esto puede obviarse con el uso de cesped o cualquiera otra protección similar en su fondo.

Para el cálculo de los canales de desviación es bueno tener presente que la textura del suelo se refiere a la del fondo del canal y no a la de la superficie del terreno, pues se da con frecuencia el caso de encontrar diferencias de importancia entre la textura del suelo en la superficie y a 30 ó 40 centímetros de profundidad.

La tabla siguiente da los valores máximos seguros para el promedio de velocidades en canales de desviación según citas de AYRES y SCOATES:
VELOCIDADES MÁXIMAS SEGURAS PARA ACEQUIAS Y CANALES DE ACUERDO CON LA TEXTURA DEL MATERIAL DE SU FONDO.

<table>
<thead>
<tr>
<th>Textura del Material</th>
<th>Velocidades en metros/segundo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arena pura, suelta y fina</td>
<td>0.23 — 0.30</td>
</tr>
<tr>
<td>Suelo arenoso muy suelto</td>
<td>0.30 — 0.45</td>
</tr>
<tr>
<td>Arena gruesa o suelo arenoso suelto</td>
<td>0.45 — 0.60</td>
</tr>
<tr>
<td>Suelos arenosos</td>
<td>0.60 — 0.75</td>
</tr>
<tr>
<td>Suelos franos arenosos</td>
<td>0.75 — 0.83</td>
</tr>
<tr>
<td>Suelos franos de aluvión o ceniza volcánica</td>
<td>0.83 — 0.90</td>
</tr>
<tr>
<td>Suelos franco-arcillosos o franco pesados</td>
<td>0.90 — 1.12</td>
</tr>
<tr>
<td>Suelos arcillosos o cascajosos</td>
<td>1.20 — 1.50</td>
</tr>
<tr>
<td>Conglomerados, cascojo cementado, capas roqueñas, rocas sedimentarias blandas</td>
<td>1.80 — 2.40</td>
</tr>
<tr>
<td>Roca dura</td>
<td>3.40 — 4.50</td>
</tr>
<tr>
<td>Concreto</td>
<td>4.50 — 6.00</td>
</tr>
</tbody>
</table>

Los canales de desviación deben calcularse muy bien previamente, pues estas estructuras cuando no son suficientemente capaces y su diseño no se ajusta a las necesidades, pueden causar mayores males que beneficios y de aquí que deben siempre trazarse con niveles de precisión. Existen tablas especiales para calcular la construcción de estas estructuras y que pueden encontrarse en detalles en la “Revista Cafetera de Colombia” Nº 121 de Junio de 1951, en el Artículo titulado “CANALES DE DESVIA- CIÓN Y ACEQUIAS DE LADERA” por Fernando Suárez de Castro y Horacio Betancourt.
Al construir un canal de desviación, se debe tener especial cuidado al seleccionar el sitio a donde irá a desaguar siendo preferible una corriente natural de agua u otro lugar donde se esté seguro que la nueva concentración de aguas no hará daños. En casos necesarios se cubrirá con vegetación el cauce y se construirán presas con el objeto de disminuir la velocidad del agua. Estas presas pueden construirse de madera, de guadua o de piedra. Puede ser muy conveniente el uso de estacas hechas con madera de plantas nacederas entre las cuales se pueden mencionar algunas especies del género Erythrina (búcaros o cachimbos), y el “mata-ratón” (Gliricidia sepium) el cañafístulo (Cassia sp.).

Las desembocaduras de los canales deben tener la forma de un abanico, esto es, ir aumentando el ancho en forma gradual hasta más o menos tres veces el original, iniciando dicho ensanche, por lo menos dos metros antes de su terminación.

Todo canal de desviación debe protegerse en su lado superior con una barrera vegetativa o con una franja de grama, la cual servirá como “desarenador” evitando se inutilice al reducirse su capacidad por sedimentación. En el caso de usarse una barrera vegetativa, ésta se sembrará paralela al borde del talud superior a una distancia de 15 a 20 centímetros y se mantendrá recortada a una altura de unos 25 centímetros del suelo.

Acequias de Ladera.— El Dr. Fernando Suárez de Castro, Supervisor General del Campo de la Campaña de Defensa y Restauración de Suelos de la Federación Nacional de Cafeteros analiza estas estructuras en la siguiente forma:
Defensa de Suelos

En regiones de muchas lluvias y de aguaceros fuertes la siembra en contorno y las barreras vivas no son defensa suficiente para los terrenos pendientes. En muchos casos es tanta la cantidad de agua lluvia que cae, que aunque se logre disminuir la fuerza del agua con las barreras y el cultivo en contorno, el terreno no tiene capacidad suficiente para absorber y retener una buena proporción de esa lluvia y necesariamente se forman “chorros” por donde el agua busca salida. En tales condiciones es necesario construir canales más o menos distanciados, que corten esas corrientes y saquen lentamente de los terrenos los excesos de agua. Esos canales o acequias de ladera van subdividiendo el volumen total de la escorrentía y en esa forma y sin que ésta adquiera velocidad excesiva, la van depositando en los desagües.

Las acequias de ladera son, pues, pequeños canales de 30 centímetros de anchura en el fondo, con taludes de 1:1 y de profundidad y desnivel variables que se construyen a distancias regulares, según la pendiente y uso del terreno. A 15 centímetros del borde superior de la acequia y a todo lo largo de ella se debe sembrar una barrera viva con el objeto de filtrar el agua que llega al canal y en esa forma disminuir la cantidad de material que en él se deposita (figura 72). Las acequias no deben construirse en terreno con
cultivo limpio de más del 30% de pendiente o con cafetal de más del 40%.

Modo de calcular acequias de ladera

Como en el caso de las barreras vivas, el intervalo o distanciamiento entre acequias varía con la pendiente del terreno y con la clase de cultivo que en éste se tenga. La separación aumenta en terrenos planos defendidos por la vegetación (por ejemplo, con cafetal bien sombreado) y disminuye en terrenos pendientes y ocupados con cultivos como el maíz, la yuca, la papa, el tabaco, etc., que ofrecen poca protección al suelo. Además hay que tener en cuenta que la acequia tiene una dimensión fija (30 centímetros) que es la anchura del fondo y no varían sino su profundidad y su desnivel.

En todos los casos se procede así:

Figura No.72-A

MODO DE MEDIR LA PENDIENTE DE UN TERRENO CON EL CABALLETE

\[\% \text{PENDIENTE} = \frac{\text{Dist. pata inferior al suelo (cms.)}}{\text{Longitud del caballete en mts.}} \]
1° Se determina la pendiente crítica (o sea la máxima pendiente más común) del terreno. Para ello puede utilizarse el caballete, el cual se coloca pendiente abajo y se eleva la pata inferior hasta que la burbuja del nivel quede en el centro. Se mide la distancia del extremo de esa pata al suelo. Ese valor en centímetros dividido por la longitud del caballete en metros, da la pendiente del terreno (figura 72-A).

2° Se determina si se trata de un terreno que va a ocuparse con un cultivo limpio (maíz, yuca, papa, tabaco, algodón, etc.), con potrero, o con cafetal. En caso de cultivo limpio se utiliza la Tabla N° 1. Si se trata de cafetales o de potreros se usa la Tabla N° 2.

3° Se busca en la columna 1 de la Tabla 1 ó 2 (según el caso) la pendiente más cercana a la que se determinó sobre el terreno. En la columna 2 se lee la distancia horizontal entre acequias y en la columna 3 la distancia a cabuya pisada.

4° Se mide sobre el terreno, la longitud aproximada de cada una de las acequias.

5° Se divide la longitud de cada acequia por 100.

6° Esta cifra se multiplica por el número (Q) de la columna 5, correspondiente a la pendiente del terreno.

7° Se busca en la Tabla 3 el valor de Q (columna 3) que más se aproxima al obtenido en la operación anterior.

8° En la misma línea horizontal (Tabla 3) se encuentra el desnivel que debe tener la acequia (columna 1) y la profundidad efectiva (columna 2).

9° A la profundidad efectiva se le agregan 10 centímetros para encontrar la profundidad que debe dársele al canal.

El procedimiento puede parecer un poco complicado pero si se siguen las instrucciones peso a paso teniendo al
<table>
<thead>
<tr>
<th>Pendiente del terreno</th>
<th>Distancia horizontal acequias metros</th>
<th>Distancia cunabia acequias metros</th>
<th>Área servida cuadrados p.c. 100 del canal</th>
<th>Descargano segundos p.c. 100 del canal</th>
<th>(p.e. p/o 100 m)</th>
<th>(m)</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>42.00</td>
<td>42.04</td>
<td>4200</td>
<td>109.5</td>
<td>238.00</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30.66</td>
<td>30.70</td>
<td>3066</td>
<td>95.0</td>
<td>326.00</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25.00</td>
<td>25.05</td>
<td>2500</td>
<td>65.0</td>
<td>400.00</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>21.60</td>
<td>21.66</td>
<td>2160</td>
<td>56.0</td>
<td>464.00</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>19.33</td>
<td>19.39</td>
<td>1933</td>
<td>50.0</td>
<td>518.00</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>17.71</td>
<td>17.77</td>
<td>1771</td>
<td>64.0</td>
<td>565.00</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>16.50</td>
<td>16.50</td>
<td>1650</td>
<td>43.0</td>
<td>606.00</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>15.55</td>
<td>15.64</td>
<td>1555</td>
<td>40.5</td>
<td>615.00</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>14.80</td>
<td>14.89</td>
<td>1486</td>
<td>38.5</td>
<td>675.00</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>14.18</td>
<td>14.28</td>
<td>1418</td>
<td>36.9</td>
<td>705.00</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13.66</td>
<td>13.78</td>
<td>1366</td>
<td>35.5</td>
<td>730.00</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13.23</td>
<td>13.37</td>
<td>1323</td>
<td>34.4</td>
<td>755.00</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>12.85</td>
<td>12.98</td>
<td>1285</td>
<td>33.4</td>
<td>780.00</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12.00</td>
<td>12.15</td>
<td>1200</td>
<td>31.2</td>
<td>835.00</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>11.25</td>
<td>11.40</td>
<td>1125</td>
<td>29.2</td>
<td>890.00</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>10.60</td>
<td>10.78</td>
<td>1060</td>
<td>27.6</td>
<td>945.00</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>10.00</td>
<td>10.17</td>
<td>1000</td>
<td>25.6</td>
<td>1000.00</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9.50</td>
<td>9.70</td>
<td>950</td>
<td>23.4</td>
<td>1055.00</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9.00</td>
<td>9.19</td>
<td>900</td>
<td>21.3</td>
<td>1110.00</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>8.58</td>
<td>8.80</td>
<td>858</td>
<td>20.4</td>
<td>1165.00</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>8.20</td>
<td>8.40</td>
<td>820</td>
<td>18.7</td>
<td>1220.00</td>
<td>470</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>7.83</td>
<td>8.08</td>
<td>783</td>
<td>17.3</td>
<td>1275.00</td>
<td>490</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>7.50</td>
<td>7.72</td>
<td>750</td>
<td>15.8</td>
<td>1330.00</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>7.20</td>
<td>7.43</td>
<td>720</td>
<td>14.0</td>
<td>1390.00</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>6.95</td>
<td>7.18</td>
<td>695</td>
<td>12.0</td>
<td>1440.00</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>6.67</td>
<td>6.92</td>
<td>667</td>
<td>10.0</td>
<td>1500.00</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>6.44</td>
<td>6.69</td>
<td>644</td>
<td>8.0</td>
<td>1550.00</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>6.20</td>
<td>6.47</td>
<td>620</td>
<td>6.0</td>
<td>1612.00</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>6.00</td>
<td>6.27</td>
<td>600</td>
<td>4.0</td>
<td>1670.00</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>
frente las 3 tablas que aquí se dan, se verá que el asunto es sencillo.

La longitud de cada acequia no debe ser mayor que el límite que se da en la columna 7 de las Tablas 1 y 2.

Cuando se sobrepasa esta dimensión hay que procurar desaguar una mitad de la acequia hacia un lado y la otra mitad hacia el otro lado, y cada tramo se calcula como una acequia separada.

Trazo de las acequias de ladera

Después de determinar estos cálculos, se trazan todas las acequias en el campo dándole el desnivel que se ha de-

Figura No. 72-B

Sistema de ACEQUIAS DE LADERA en un cafetal con menos del 40% de pendiente.
TABLA N° 2

ACEQUIAS DE LADERA EN POTREROS, CAFETALES O BOSQUES

<table>
<thead>
<tr>
<th>Pendiente del terreno</th>
<th>Distancia horizontal entre acequias, metros</th>
<th>Distancia a cabecera de acequias, metros</th>
<th>Área servida, m²</th>
<th>Caudal del canal, l/s</th>
<th>Descarga, Q</th>
<th>Límite de longitud, m</th>
<th>Metros de acequia por hectárea</th>
<th>Límites de longitud, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>40.00</td>
<td>4000.00</td>
<td>78.00</td>
<td>250.00</td>
<td></td>
<td>110.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>36.40</td>
<td>3640.00</td>
<td>71.00</td>
<td>274.73</td>
<td></td>
<td>110.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>33.30</td>
<td>3333.00</td>
<td>65.00</td>
<td>300.00</td>
<td></td>
<td>120.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>30.80</td>
<td>3000.00</td>
<td>39.00</td>
<td>324.68</td>
<td></td>
<td>130.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>28.60</td>
<td>2860.00</td>
<td>56.00</td>
<td>373.13</td>
<td></td>
<td>140.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>26.70</td>
<td>2670.00</td>
<td>52.00</td>
<td>374.53</td>
<td></td>
<td>150.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>23.50</td>
<td>2350.00</td>
<td>48.00</td>
<td>425.53</td>
<td></td>
<td>180.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>22.00</td>
<td>2200.00</td>
<td>43.00</td>
<td>454.54</td>
<td></td>
<td>200.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>21.00</td>
<td>2100.00</td>
<td>41.00</td>
<td>476.19</td>
<td></td>
<td>210.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>25.00</td>
<td>2500.00</td>
<td>48.60</td>
<td>400.00</td>
<td></td>
<td>180.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22.70</td>
<td>2270.00</td>
<td>44.13</td>
<td>440.00</td>
<td></td>
<td>200.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>21.60</td>
<td>2160.00</td>
<td>41.99</td>
<td>463.00</td>
<td></td>
<td>200.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>20.80</td>
<td>2080.00</td>
<td>40.43</td>
<td>480.00</td>
<td></td>
<td>210.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>20.00</td>
<td>2000.00</td>
<td>38.88</td>
<td>500.00</td>
<td></td>
<td>220.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>19.20</td>
<td>1920.00</td>
<td>37.32</td>
<td>520.00</td>
<td></td>
<td>220.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>18.50</td>
<td>1850.00</td>
<td>35.96</td>
<td>540.00</td>
<td></td>
<td>230.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>17.80</td>
<td>1780.00</td>
<td>34.60</td>
<td>562.00</td>
<td></td>
<td>230.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>17.20</td>
<td>1720.00</td>
<td>33.44</td>
<td>581.00</td>
<td></td>
<td>240.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>20.00</td>
<td>2000.00</td>
<td>38.88</td>
<td>500.00</td>
<td></td>
<td>220.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>18.80</td>
<td>1880.00</td>
<td>36.55</td>
<td>532.00</td>
<td></td>
<td>220.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>17.60</td>
<td>1760.00</td>
<td>34.21</td>
<td>568.00</td>
<td></td>
<td>230.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>16.70</td>
<td>1670.00</td>
<td>32.46</td>
<td>600.00</td>
<td></td>
<td>240.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>15.80</td>
<td>1580.00</td>
<td>30.71</td>
<td>633.00</td>
<td></td>
<td>250.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>15.00</td>
<td>1500.00</td>
<td>29.16</td>
<td>667.00</td>
<td></td>
<td>300.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...ducido como conveniente. Luego se suavizan las curvas muy cerradas de la línea.

Las acequias de ladera son difíciles de construir en ca-
Defensa de Suelos

fetales viejos por tropezarse en su camino con muchos árboles que habrá necesidad de dañar. Deben establecerse de preferencia, antes de sembrar las nuevas plantaciones, en tal forma que sirvan de guía para la siembra en contorno y a la vez se tenga el suelo bien defendido durante los primeros años del cafetal en los cuales es mayor el peligro de la erosión.

Todas las acequias deben desaguar en un sitio bien protegido con vegetación, en donde se esté seguro que no van a causar daños. Antes de comenzar su construcción debe haberse localizado un desagüe conveniente para ellas.

El trazado de las acequias se comienza del desagüe hacia arriba de manera que el fondo de aquéllas quede tan alto que no haya peligro de que les penetre el agua que baja por el desagüe.

Construcción de las acequias de ladera

La construcción debe comenzarse por la parte más alta del terreno. Esto es muy importante, pues de otro modo podría dañarse toda la obra en un aguacero fuerte. En general el trabajo se hace a mano, aunque el darle dos o tres pases previos de arado a la línea marcada, disminuye en mucho el trabajo manual necesario.

La tierra que se saca de la excavación debe colocarse al lado inferior del canal de manera que después de hacer los taludes quede a 15 centímetros de distancia (ver figura 72-B). Así se evita que vuelva a caer dentro de la acequia.

Debe excavarase primero una zanja con profundidad igual a las dos terceras partes de la profundidad necesaria. Luego con el caballet se marcan puntos que tengan la pendiente exacta del canal (maestras) y se termina la excavación uniendo esos puntos. Luego se le dan a las paredes los taludes necesarios. Hay que tener gran cuidado para que
en la acequia no queden altos ni bajos que luego irían a formar encharcamientos. La caída debe ser uniforme en todo el trayecto.

Al terminar este trabajo se procede a sembrar una ba-

TABLA N° 3

ACEQUIAS DE LADERA

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desnivel de acequia en metros por metro (S)</td>
<td>Profundidad efectiva metros</td>
<td>Descarga Q litros por segundo</td>
</tr>
<tr>
<td>0.008</td>
<td>0.03</td>
<td>3.6</td>
</tr>
<tr>
<td>(Corresponde a un desnivel del 8 por mil).</td>
<td>0.06</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>51.0</td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td>74.0</td>
</tr>
<tr>
<td></td>
<td>0.21</td>
<td>98.0</td>
</tr>
<tr>
<td>0.01</td>
<td>0.03</td>
<td>4.1</td>
</tr>
<tr>
<td>(Corresponde a desnivel del 1 por ciento).</td>
<td>0.06</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>57.5</td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td>81.5</td>
</tr>
<tr>
<td></td>
<td>0.21</td>
<td>110.0</td>
</tr>
<tr>
<td>0.02</td>
<td>0.03</td>
<td>5.7</td>
</tr>
<tr>
<td>(Corresponde a un desnivel del 2 por ciento).</td>
<td>0.06</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>55.5</td>
</tr>
</tbody>
</table>

Nota: Agréguese 0.10 metros a la profundidad efectiva, para obtener la profundidad que debe dársele al canal.
rrera viva de vetiver, pasto imperial, o limoncillo que vaya a 15 centímetros del borde superior de la acequia y a todo lo largo. Estas barreras deben sembrarse en hilera doble al tresbolillo con distancia de 15 a 20 centímetros entre cepas.

Las acequias de ladera deben mantenerse perfectamente limpias tanto de yerba como de restos vegetales. Después de aguaceros fuertes deben inspeccionarse para hacerles las reparaciones que necesiten. Si las acequias no se mantienen en forma correcta pueden desbordarse y causar grandes daños.

Zanjas de Meteorización.— El Departamento Técnico de la Federación Nacional de Cafeteros, desde hace mucho tiempo ha venido recomendando estas estructuras para el mejoramiento de los cafetales en decadencia. Consisten ellas, en excavaciones de forma rectangular cuyas dimensiones son de 40 centímetros de ancho y de profundidad y de un largo indefinido.

Estas zanjas persiguen los siguientes objetivos:
1° Mejorar la distribución del agua en el terreno;
2° Aumentar la aereación del suelo.
3° Incorporar material orgánico al terreno;
4° Permiten el cambio de algún material del suelo a la superficie para su pronta meteorización y consiguiente liberación de principios nutritivos en forma asimilable y fácilmente absorbidos por las raíces del cafeto; y
5° Reducen la erosión.

De acuerdo con los resultados obtenidos por los agricultores cafeteros en este país, no cabe duda sobre la gran influencia que estas zanjas tienen sobre las condiciones físicas del suelo, pues necesariamente mejoran la distribución del agua en el terreno y aumentan la aereación estimulando por lo tanto la actividad de las raíces. Se sabe que las rai-
ces de las plantas tienen un alto requisito de oxígeno para su respiración y que la energía obtenida en este proceso de respiración es utilizada para la absorción de los principios nutritivos del suelo. Cualquier condición que reduzca la capacidad de oxígeno en el suelo, menoscaba la respiración de las raíces, la absorción de alimentos y por lo tanto el desarrollo vegetativo y la producción del fruto.

Además al mejorar la aereación del suelo y procurar una mejor distribución de la humedad, se desadaptan ciertos tipos de suelos para la propagación de hongos y otros organismos responsables de enfermedades de las raíces y aun del tronco y del follaje. Estas enfermedades son la causa principal de decadencia de algunas plantaciones ya de alguna edad.

Los efectos de las zanjas en conservación y mejora de los suelos son los siguientes:

1° Rompen la longitud de extensión en las penden-
tes del terreno, disminuyendo por consiguiente la capa-
cidad erosiva de las aguas de escorrentía.

2° Dividen las masas o cantidades de agua quitándo-
les velocidad y poder erosivo.

3° Reciben y retienen el suelo fino que la erosión la-
minar y de arroyuelos van arrastrando del predio inme-
diatamente superior.

4° Absorben la humedad y dan tiempo para la infil-
tración y almacenamiento de agua especialmente en las
localidades de suelos secos.

5° Recolectan material orgánico proveniente de las
hojas, yerbas, ramas, etc., que lentamente caen de los ár-
boles y arbustos; y

6° Ayudan a la meteorización y a la descomposi-
ción de las materias minerales del suelo al exponerlo a la
acción de los agentes atmosféricos (agua, aire, luz y calor).
Algunas veces se utilizan estas zanjas como reservorios de material orgánico, para lo cual se acostumbra llenarlas con dicho material en varios estados de descomposición. Para estos casos es recomendable que no se llenen completamente para no disminuir la eficiencia y capacidad de retener la humedad.

Un poco de material orgánico en el fondo de estas zanjas para ayudar a mejorar las propiedades físicas del terreno, es suficiente.

Las dimensiones más comunes de estas estructuras son las siguientes:

Como ya se dijo el ancho y la profundidad es de 0.40 x 0.40 metros; la longitud máxima, no debe pasar de 10 metros, lo más común es de 6 metros.

Tanto el borde inferior como el fondo de la zanja, deben quedar a nivel de tal manera que al llenarse de agua no vaya a desbordarse por alguno de sus extremos causando entonces un deslave aun mayor del suelo y posiblemente la formación de barrancos o zanjones.

Al construir las zanjas se debe tener cuidado de hacerlas siguiendo más o menos las líneas de contorno del terreno y en disposición horizontal por las calles del cafetal procurando que las estructuras de dos líneas consecutivas queden dispuestas en triángulo y deben quedar tan alejadas como sea posible de los cafetos.

El trazo debe hacerse con el “caballete” para luego demarcar con estacas la línea de contorno, desplazar hasta la mitad de la calle aquellas que señalen el sitio de las estructuras muy cerca de algún cafeto.

La distancia mínima entre las líneas de zanjas debe ser de 6 metros y la máxima de 12 metros.

Al hacer las excavaciones de las zanjas, la tierra debe colocarse cuidadosamente al lado y lado de los extremos
formando un surco o caballón que debe apisonarse regularmente con la pala o garlanche de trabajo. En ningún caso el suelo removido debe tirarse pendiente abajo o dejarse en montones más o menos piramidales. Los surcos formados con la tierra removida si se acondicionan bien y se protegen con plantas que formen barrera, servirán para interrumpir las corrientes de agua.

La época más apropiada para hacer las zanjas, es cuando el suelo dispone de una humedad óptima, lo cual se conoce al apretar un puñado de tierra y ésta forma un bloque uniforme que al arrojarlo al suelo se desmorona como migajas de pan.

Para proteger mejor el suelo excavado, tenganse presente los siguientes puntos:

1° Al hacer el surco al lado y lado de los extremos de la zanja, obliguese al obrero a compactar regularmente la tierra por medio del instrumento con que trabaja.

2° Colóquese la tierra en forma de surco de lomo aplanado a cada lado de los extremos de la zanja.

3° Si a la mano existen vástagos de plátano, troncos, de plantas, ramas de árboles, basuras, etc., colóquense en la parte inferior de los surcos formados con la tierra para darle mayor estabilidad.

4° Si en ausencia de los anteriores materiales, solo existen “cespedones” (“Tepes” en Nariño “Cesperes” en Boyacá), estos deben colocarse en hilera y con el pasto hacia afuera para que sirvan de apoyo a los surcos de tierra.

5° Debe siempre sembrarse sobre la tierra de los surcos una cualquiera de las siguientes plantas: “Coneja” (Pseudochinolaena polystacchia (HBK) “Panameña” o “Suelda” (Tradescantia zebrina y otras) (Staff). “Añil rastrero” (Indigofera endecaphylla) u otras plantas que se crean apropiadas.
Las zanjas deben conservarse limpiándolas periódicamente y aplicando el material recogido en ellas, alrededor de los cafetos cercanos a manera de abono o también utilizarlo para llenar los hoyos destinados para resiembra.

Estas estructuras no son recomendables para toda clase y condición de suelos, ellas pueden usarse:

a) En regiones de poca lluvia;

b) En suelos flojos o permeables;

c) En pendientes entre 10 y 50%.

No deben usarse: a) en regiones muy lluviosas y con suelos o subsuelos pesados o impermeables; y

b) en pendientes menores del 10% o mayores del 50%.

Según las especificaciones anotadas y tomando como base un cafetal sembrado a 3 metros entre planta y planta, se pueden construir como máximo 1.500 metros de zanjas, los cuales pueden tener una capacidad de retención de aproximadamente 240 metros cúbicos de agua equivalentes a 24.00 milímetros de lluvia. Esto indica que los terrenos trabajados por este sistema quedarán defendidos de toda lluvia menor de 24 milímetros y de todas aquellas mayores cuya intensidad, una vez llenadas las zanjas, fue menor de la rapidez de infiltración de las aguas en ellas y en el resto de la superficie.

Existen casos de terrenos con subsuelos impermeables, en donde el uso de las zanjas de meteorización está indicado, pero naturalmente, variando considerablemente la profundidad, la cual deberá ser el doble de la indicada anteriormente, es decir, que en lugar de tener 0.40 mts. deberá profundizarse a 0.80 mts. y así se consigue mejorar el desagüe interno de los suelos, bajar el nivel freático y aumentar la aereación.
Cajuelas.— Estas son pequeñas zanjas cuyas dimensiones más comunes son las siguientes:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Medida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>1.20 mts.</td>
</tr>
<tr>
<td>Anchura</td>
<td>0.40 "</td>
</tr>
<tr>
<td>Profundidad</td>
<td>1.20 "</td>
</tr>
</tbody>
</table>

Cuando los suelos son poco propensos a la erosión y las regiones son muy lluviosas, estas dimensiones pueden cambiarse así:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Medida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>1.20 mts.</td>
</tr>
<tr>
<td>Anchura</td>
<td>0.30 "</td>
</tr>
<tr>
<td>Profundidad</td>
<td>0.30 "</td>
</tr>
</tbody>
</table>

Las recomendaciones y usos, son iguales a las dadas para las zanjas de meteorización, solo que estas cajuelas pueden ser utilizadas más frecuentemente para ser casi llenadas con material orgánico en diversos estados de descomposición y también resemblan en ellas algunas plantas de sombrío o aun cafetos.

Se distribuyen en líneas al contorno de la pendiente del terreno por las calles de los cafetos y a una distancia aproximada de 6 metros una de otra.

Los sistemas de trazo, hechura y conservación, son los mismos dados para las zanjas de meteorización.

Se puede establecer un sistema de combinación de zanjas y cajuelas en los cafetales ya sembrados y en donde las circunstancias lo permitan. Consiste en defender el terreno por “cajuelas” trazadas en curvas de nivel y separadas por lo menos 4 metros de distancia horizontal, alternando con zanjas de meteorización, en tal forma que el suelo no defendido por las cajuelas, sí lo esté por las zanjas.

Este sistema podrá usarse de acuerdo con las siguientes especificaciones:

1° En tierras poco erosionables y en pendientes que
oscilen entre el 10% y el 60%, siempre que no haya peli-
gro de deslizamientos o derrumbes.

2° En las tierras muy susceptibles a la erosión solo
podrá emplearse esta combinación en pendientes hasta de
un 40%; y

3° A toda estructura se aplicarán los cuidados de cons-
trucción y sostenimiento indicados anteriormente.

Como las raíces de los cafetos se extienden grandemen-
te, no es aconsejable acercar las cajuelas, ni las zanjas de
meteorización, más allá de la gotera del follaje, a esta
distancia, según experimentos realizados en el Centro de
Investigaciones de Café en Chinchiná, solo se destruye
un poco menos del 2% de las raíces absorbentes del árbol
con las cajuelas y con las zanjas de meteorización un po-
co más de dicho porcentaje.

Al hacer la excavación para las “cajuelas o zanjas de
meteorización” la tierra debe colocarse cuidadosamente a
lado y lado de los extremos de zanja, formando un surco
o caballón que debe apisonarse regularmente con la pala
o garlancha de trabajo. Los bordes de las cajuelas quedan
verticales y en ningún caso el suelo removido debe tirarse
pendiente abajo o agruparlo en montones más o menos
piramidales. Los surcos formados con la tierra removida
de las cajuelas ofrecen un obstáculo para el agua erosional
y al suelo que va rodando, acción defensiva ésta que du-
plica la efectividad de la estructura como sistema entiero-
sivo.

Terrazas individuales.— Las terrazas individuales son
pequeños terraplenes casi horizontales que se construyen
circundando la base de los árboles o arbustos y de forma
generalmente semicircular. Cuando se hacen antes de la
siembra definitiva de la planta, esta queda por lo regular
en el centro de la terraza.
Estas estructuras cumplen los siguientes objetivos en conservación de suelos:

1° Quitan velocidad a las aguas de escorrentía al dividir la longitud de la pendiente y por lo tanto le restan masa y poder erosivo.

2° Como la rampla o terraplen es inclinado hacia el interior, retiene las partículas más finas y fértiles de los suelos.

3° Como retienen la materia orgánica, ayudan a mantener los elementos nutritivos que se apliquen como fertilizantes.

4° Ayudan a meteorizar las capas profundas del suelo y a retener la humedad.

5° El mullido de la parte inferior del plato, proporciona un medio adecuado para que el cafeto, los frutales y otras plantas, echen raíces nuevas y ganen superficie de pelos absorbentes aumentando así el radio de absorción en el suelo.

6° La plataforma, en la parte que queda contra la pendiente, sirve de apoyo cómodo a los recolectores del grano del café.

7° El terraplen sirve de depósito a los granos que por exceso de madurez u otra causa se caen del árbol, facilitando así la recolección.

8° Evitan la competencia de otra vegetación en el radio de raíces del arbusto del cafeto.

Las terrazas individuales están indicadas en los siguientes casos:

a) En pendientes comprendidas entre el 6% y 50%, existen algunos casos de terrenos arcillosos en los cuales podrían hacerse hasta el 55% reduciendo el diámetro del terraplen o plato.

b) En terrenos pendientes donde el subsuelo se encuentra
a profundidades mayores de 30 centímetros, o sea que la capa vegetal tiene por lo menos tal espesor. Cuando este horizonte del suelo solo tiene 20 centímetros o menos, no es aconsejable que las terrazas se hagan en pendientes mayores del 45%, a menos que sean abonadas abundantemente con material orgánico bien descompuesto; y

c) Susceptibilidad erosiva de los suelos; mientras mayor sea la susceptibilidad del suelo a la erosión menor deberá ser el movimiento de tierra para construir terrazas; por lo tanto, en terrenos arenosos o sueltos, es conveniente reducir el límite máximo de la terraza a suelos de 40 ó 45% y en los casos de suelos arcillosos algo resistentes a la erosión se pueden construir en pendientes mayores del 50%.

En toda terraza deben considerarse las siguientes partes:

1ª Pendientes del terreno.— En las pendientes agudas hay que evitar la formación de grandes taludes que solo provocan erosión.

2ª Talud superior.— Corte que se hace en la parte superior del terreno donde se va a construir la terraza.

3ª Plato o terraplén.— La parte más o menos plana que se forma con la tierra y material que se extrae al hacer el talud superior.

4ª Talud inferior o contrahuella.— Es la parte o cara exterior formada con la disposición de la tierra removida al hacer el talud superior y formar el plato o terraplén.

5ª Cresta.— Es el filo o borde inferior del plato o terraplén; y

6ª Angulo de reposo.— Este está constituido por la posición que se le de al suelo removido sobre la superficie inclinada del terreno.
Conocidas las partes anteriores y teniendo en cuenta las condiciones de los suelos antes enumeradas, se puede proceder a la construcción de las terrazas, para lo cual se tendrán presentes las siguientes normas:

Primero: Si se trata de terrenos limpios donde se va a iniciar las siembras, deben señalarse con estacas, los sitios precisos donde se van a hacer las estructuras; pero si se tratase de plantaciones hechas, los mismos árboles servirán de punto de partida.

Segundo: Márguese en el cabo de la herramienta del trabajador o en una vara especial, la medida correspondiente al radio de excavación de la terraza y con esta medida el obrero marcará tres puntos a los lados de la estaca del tronco del árbol, así: uno al lado derecho, otro en la parte alta del terreno y el otro al lado izquierdo del nivel del tronco del árbol o estaca.

Tercero: Luego se procede a cortar el talud superior de la terraza acomodando la tierra y todo el material que resulte en el sitio que corresponde al talud inferior o contrahuella. Esta tierra debe acomodarse con cuidado y compactarse lo más posible. Para esta operación, debe usarse la pala o el azadón común.

Hechos los cortes anteriores y colocada y apisonada la tierra como queda dicho, resta solo pulir las superficies formadas teniendo cuidado que al picar el suelo no aproximarse demasiado a las raíces del árbol.

La época más adecuada para la construcción de las terrazas, es antes de las siembras lo cual hace mucho más fácil su localización. Si es posible la siembra debe hacerse en contorno usando a la vez el sistema de triangulación. Es más conveniente hacer estas estructuras cuando el terreno esté húmedo porque se facilita la compactación del talud
inferior y sufrirá menos con las primeras lluvias, además de resultar más económica la construcción.

Tamaño de las terrazas.— Para entender mejor las dimensiones e inclinaciones de los distintos cortes, es preciso tener en cuenta que es costumbre expresar las inclinaciones en la siguiente forma:

1:1; 2:1; ½:1; etc. En estas convenciones, se entiende que el primer número se refiere a la distancia horizontal y el segundo a la distancia vertical. Así, los cuadros que a continuación se anotan dan los radios e inclinaciones recomendadas para los distintos grados o porcentajes de pendiente en los terrenos:

Tamaño

<table>
<thead>
<tr>
<th>Pendiente del Terreno</th>
<th>Radio de la Terraza</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>No es recomendable terraza</td>
</tr>
<tr>
<td>6°</td>
<td>35%</td>
</tr>
<tr>
<td>35°</td>
<td>40%</td>
</tr>
<tr>
<td>40°</td>
<td>45%</td>
</tr>
<tr>
<td>45°</td>
<td>50%</td>
</tr>
<tr>
<td>50°</td>
<td>55%</td>
</tr>
<tr>
<td>+ de 55%</td>
<td></td>
</tr>
</tbody>
</table>

Inclinación

<table>
<thead>
<tr>
<th>Pendiente del Terreno</th>
<th>Talud Superior</th>
<th>Talud Inferior</th>
</tr>
</thead>
<tbody>
<tr>
<td>6°</td>
<td>30% 1:1; 45°; 100%</td>
<td>1:1; 45°; 100%</td>
</tr>
<tr>
<td>30°</td>
<td>35% ½:1; 63,3°; 200%</td>
<td>1:1; 45°; 100%</td>
</tr>
</tbody>
</table>
INCLINACION DEL PLATO DE LA TERRAZA

<table>
<thead>
<tr>
<th>Desagüe del Terreno</th>
<th>Lluvia</th>
<th>Pendiente del Terreno</th>
<th>Inclinación del Plato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bueno</td>
<td>Abundante</td>
<td>6° 20%</td>
<td>5%</td>
</tr>
<tr>
<td>Bueno</td>
<td>Abundante</td>
<td>20° 55%</td>
<td>10%</td>
</tr>
<tr>
<td>Bueno</td>
<td>Abundante</td>
<td>6° 55%</td>
<td>5%</td>
</tr>
<tr>
<td>Pobre</td>
<td>Insuficiente</td>
<td>6° 55%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Por lluvia abundante se entiende cuando en la región los cafetos nunca sufren por falta de humedad; por lluvia insuficiente se entiende cuando sufren los cafetos por falta de humedad durante alguna época del año. La inclinación del plato hacia el talud superior puede aumentarse cuando se crea que al consolidarse el talud inferior, irá a reducir o bajar mucho de manera que una vez consolidado dicho talud, quede más o menos con la inclinación recomendada.

El plato de la terraza debe mantenerse cubierto con materia orgánica como hojarasca, pulpa de café descompuesta, estiercol de ganado descompuesto, etc. Una cubierta de hojarasca ayudará a mantener esta superficie libre de vegetación y economizará gastos de limpieza.

El talud inferior o contrahuella, debe cubrirse hasta la cresta y parte del semicírculo inferior de la terraza, con hojarascas u otro material adecuado o, lo que es mejor sembrarlo con una de las siguientes plantas que afianzan el suelo removido y lo defienden de la erosión:

Añil rastrero (originario de Ceilán - Indigopheraendecaphylla).
Coneja (Pseudochinolaena polistachia -H. B. K.)
Stafe.
Panameña, zebra o víbora (maravilla en Popayán) (Tradescantia zebrina). (Hort y otras especies).
Cadillo o "cohitre" de Venezuela y Puerto Rico (Commelina virginica L.) Crotalarias, sembradas en la contrahuella y cresta, etc.

Conservación de las terrazas.— Hechas las terrazas individuales, el agricultor no debe abandonarlas, pues por el contrario debe atenderlas en la forma siguiente:

a) Abonarlos en el semicírculo superior, con delgadas capas de abono orgánico.

b) Limpiarles las yerbas y tierra que se hayan depositado en el pie del talud mermando su inclinación; este material puede colocarse en la contrahuella y el semicírculo inferior del terraplen para reconstruirlo.

c) Cortar con machete a tres o cinco centímetros las yerbas que hayan nacido en la contrahuella o talud inferior, la cresta y parte del semicírculo inferior.

La terraza individual es sólo una de las muchas estructuras al alcance del agricultor para ayudar a reducir la erosión en los cafetales, pero de por sí no puede considerarse como la única solución al problema. Debe tenerse presente, que el objetivo de esta práctica, no es el de recoger toda la precipitación pluvial, sino retener parte de ella y crear obstáculos en el camino descendente del resto. La construcción de una terraza individual capaz de retener toda la precipitación, sería completamente antieconómica y estaría contra los principios de conservación de suelos que mandan remover la menor cantidad de tierra posible.

En consecuencia, es aconsejable defender los suelos de cafetales, mediante una combinación de terrazas y cajuelas, así:

En cafetales nuevos bien espaciados, cada cafeto puede llevar su terraza y en medio de cada 2 terrazas, una cajuela, pero en terrenos poco erosionables y hasta con 55%
de pendiente y en los suelos muy erosionables solo hasta un 40% de pendiente.

En los sitios semiáridos, esta combinación es muy interesante, porque las terrazas y cajuelas absorben gran cantidad de agua, la cual retienen y permiten una infiltración adecuada.

En cafetales ya sembrados, lo aconsejado es hacer terrazas separadas como mínimo 4 metros en sentido horizontal y dar a las cajuelas intermedias una distancia entre 6 ó 10 metros.

En el caso de hacer terrazas individuales en cafetales establecidos, debe tenerse en cuenta que con esta práctica, según datos obtenidos en el Centro de Chinchiná, se destruyen del 37.4% al 37.5% de las raíces del árbol, lo cual puede perjudicar la misma vida de la planta.

Cuando los cafetales ya están muy viejos y agotados y se impone una renovación o sea plantar café nuevo, se pueden recomendar terrazas individuales separadas a unos 4 metros en el sentido transversal y en curvas de nivel con los intervalos verticales necesarios, a fin de que, donde ello sea posible, beneficie los mejores árboles y al renovar el cafetal sirvan de base a las nuevas plantas. Esto significa que la mayoría de las terrazas quedarán en las matas existentes y otras en los claros aguardando la resiembra.

Terrazas contínuas.— En los terrenos inclinados con largas pendientes, el agua de lluvia adquiere gran velocidad y por ello mayor poder erosivo.

Para evitar en estos casos las pérdidas de suelo, se utilizan las terrazas continuas, que son estructuras que disminuyen la velocidad de las aguas haciendo más cortas las pendientes de los terrenos. Para que respondan eficientemente, es necesario que las distancias que las separan varíen de acuerdo con la pendiente, es decir, cuando la pen-
diente es más empinada, la distancia entre una y otra terraza será menor y serán más espaciadas cuando la pendiente sea menor.

Cada terraza continua, deberá interceptar el agua escu
rrida de la parte más alta, disminuyendo así su poder erosivo y haciendo que los materiales arrastrados por la corriente, producto del deslave, se depositen en el canal de la terraza evitando así que el agua arrastre nuevas partículas del suelo vegetal.

Por lo común este tipo de terrazas continuas llevan el nombre de “bancales”, que por sus características, teóricamente se consideran como el sistema ideal para cultivar los terrenos pendientes, sin peligro de erosión acelerada. Pero en la práctica, esta clase de estructuras tiene grandes desventajas entre las cuales, se pueden mencionar las siguientes:

1ª Costo de construcción demasiado elevado.
2ª Costo de sostenimiento igualmente alto.
3ª El área cultivable se reduce considerablemente, llegando solo a un 25% en algunos casos; y
4ª La mayor parte del área horizontal de la terraza queda compuesta por el material del subsuelo de poca fertilidad y por ello requiere intenso abonamiento para conseguir cosechas aceptables.

En general este tipo de terrazas se construye de acuerdo a las siguientes normas:

1ª Se usan los intervalos verticales recomendados para las acequias de ladera.
2ª Los taludes deben ser de 1:1 (100% ó 45°) protegidos con vegetación densa. Solo en el caso de terrenos muy estables como las arcillas laterizadas pueden hacerse taludes ½ :1 (200% ó 63°).
3° El canal de la terraza no debe tener mayor inclinación del 1%.

4° La parte horizontal plana debe tener una inclinación hacia el canal, en la base del talud, entre 2 y el 4%.

5° No deben construirse en pendientes mayores del 35%, a menos que el terreno sea sumamente resistente a la erosión, además en pendientes mayores al área plana horizontal queda muy reducida.

6° No se recomienda su construcción en suelos que tengan un horizonte A con menos de 50 centímetros o si la roca se encuentra a menos de dos metros de profundidad.

7° No es aconsejable estas terrazas con más de 200 metros de longitud; y

8° Todo sistema de terrazas requiere un canal de desagüe bien calculado, bien construido y bien protegido o un desagüe natural que resista la nueva concentración de agua.

Existen dos sistemas para la construcción de terrazas de banco o contínuas: Sistema rápido y Sistema lento.

El primero se lleva a efecto con maquinaria agrícola pesada, como tractores con arados “Bulldozer”, etc. Este sistema puede ser peligroso en pendientes como las comunes en nuestra zona media.

El segundo sistema, o sea el lento, consiste en sembrar barreras vegetativas densas, siguiendo las curvas de nivel y las normas de intervalos verticales, inclinación, etc., mencionadas antes y una vez las barreras estén desarrolladas, se procede a darles tres o cuatro cortes con azada o arado, anualmente a los espacios comprendidos entre las barreras formando talud. A los 4 ó 6 años se tendrá un bancal más o menos definido formado por la misma erosión y la retención causada por las barreras. Los espacios entre
las barreras vivas pueden cultivarse desde el primer momento. Este sistema es el más económico y puede utilizarse ventajosamente en conexión con ciertos cultivos limpios.

Recomendaciones generales sobre conservación de suelos en los cafetales.

La defensa y restauración de los suelos cafeteros en Colombia se deben basar fundamentalmente en las siguientes cuatro prácticas:

1ª Repoblación y mantenimiento del sombrío en los cafetales.

2ª Adopción de prácticas de desyerbo a machete, selectivo o de “caimán” y la abolición del sistema común del azadón y de la pala en los terrenos pendientes.

3ª Protección de los suelos con plantas de cobertura apropiadas; y

4ª Utilización de abonos orgánicos.

Habrá necesidad de tenerse siempre muy presente, que nunca debe planificarse una práctica mecánica o de ingeniería que envuelva grandes movimientos de tierra, si es posible conseguir los mismos resultados por medio de prácticas agronómicas sencillas basadas en el uso adecuado de la vegetación y de los métodos modernos de cultivo.