LA COMPOSICIÓN DE LOS GRANOS DE CAFÉ VERDE Y TOSTADO

Los químicos han estudiado los granos de café verde y tostado por más de 100 años, pero los mayores progresos en la elucidación de la composición del grano de café verde y de los cambios que ocurren durante la torrefacción han sido hechos durante la última década debido al avance en las técnicas de análisis.

Los granos de café son producidos por una planta de la familia de las Rubiaceae y el género Coffea. Las especies de mayor significado comercial son Coffea arabica (comúnmente conocida como Arabica) y Coffea canephora (comúnmente conocida como Robusta).

Los datos sumarizados en esta revisión se refieren casi exclusivamente a estas especies, pero se conocen otras de las cuales unas pocas son de interés comercial menor.

Se conoce que hay diferencias grandes de composición entre estas especies, diferencias más pequeñas dentro de las especies, y otras diferencias que son originadas por el clima, composición del suelo y altitud a la cual son cultivadas las plantas. Los mismos factores influyen sobre la calidad del café, de una manera que aún no es perfectamente comprendida. La composición influye sobre la calidad.

El proceso de torrefacción es una pirolisis exotérmica de alta temperatura que produce una pérdida total de peso de un 15 - 25% dependiendo de su intensidad. Se emplean temperaturas del aire de 200 - 230 grados C, hasta 20 minutos, pero la temperatura en el grano de café debe ser mayor debido a la naturaleza exotérmica del proceso.

Los granos sufren un incremento considerable en su volumen debido a la expansión de los componentes que se vaporizan, y hay cambios amplios en la textura, color, sabor y aroma.

1) Contenido en humedad:

 Este es igual a la pérdida en peso resultante de calentar los granos en polvo hasta peso constante a 105 grados C.

 El valor exacto depende del método y de las condiciones de almacenaniento, 12% es un valor típico.

 El contenido de humedad de los granos tostados es aproximadamente del 2%, una parte de ésta puede haber sido absorbida de
la humedad atmosférica después de la torrefacción.

Para los polvos de café instantáneo la humedad es de más o menos un 3%.

A no ser que se diga lo contrario, todos los datos citados en este artículo están dados en base seca.

2) Minerales:

Se ha reportado que los granos de café verde contienen de 3 - 4.5% de ceniza normal. El contenido de elementos individuales varía con la diversidad, región de cultivo, si es empleado el proceso húmedo o el seco, y el uso de fertilizantes y abonos. En la Tabla No. 1 se presentan los valores de los minerales en los granos de café verde.

Se ha reportado que no hay una correlación definida entre el contenido mineral y la calidad, no obstante hay leves indicaciones de la mejor calidad de la bebida cuando hay un alto contenido de zinc, manganeso y rubidio en el grano verde.

Los cambios durante la torrefacción probablemente están restringidos a cambio del anión con el que está asociado el catión, quizá acompañado por un cambio en la solubilidad.

TABLA No. 1

CONTENIDO MINERAL TÍPICO DE LOS GRANOS DE CAFÉ VERDE

<table>
<thead>
<tr>
<th>A- Componentes mayores, en mg %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potasio</td>
</tr>
<tr>
<td>Magnesio</td>
</tr>
<tr>
<td>Calcio</td>
</tr>
<tr>
<td>Sodio</td>
</tr>
<tr>
<td>Hierro</td>
</tr>
<tr>
<td>Manganeso</td>
</tr>
<tr>
<td>Rubidio</td>
</tr>
<tr>
<td>Zinc</td>
</tr>
<tr>
<td>Cobre</td>
</tr>
<tr>
<td>Estroncio</td>
</tr>
</tbody>
</table>
Componentes menores, en μg%:

- Cromo: 74 - 1327
- Vanadio: 70 - 110
- Bario: <100 - 615
- Níquel: 11 - 388
- Cobalto: 10 - 93
- Plomo: 18 - 77
- Molibdeno: 11 - 27
- Titanio: 4 - 20
- Cadmio: 3

Más del 90% de las sales son solubles en agua y constituyen un 10% en peso del polvo de café instantáneo. Aproximadamente la mitad del calcio es insoluble.

Recientemente se ha reportado que la determinación de la ceniza normal, la ceniza sulfatada o el contenido en potasio de los cafés instantáneos solo pueden dar una medida arbitraria del rendimiento de la extracción, principalmente debido a la variabilidad del contenido de potasio y total en minerales de los diferentes cafés verdes, y en menor extensión a la variación en las condiciones del proceso que son comercialmente usadas en la extracción.

3) Alcaloides: La cafeína es el principal alcaloide del grano de café, y a esta se atribuye la mayoría de la actividad estimulante de las bebidas de café. Los granos de café robusta generalmente contienen más cafeína (1.6 - 2.4%) que los ibericas (1.2 - 1.5%) o los arabicas (0.9 - 1.2%), aunque han sido reportados valores extremos de 0.6 - 3.0%. También están presentes la teobromina y la teofilina. Estos alcaloides están virtualmente ausentes en muchas especies silvestres de café (10-40 ppm) y se está desarrollando un amplio programa para producir granos de café de alta calidad con un contenido natural muy bajo de cafeína.

La descafeinización mediante extracción con un hidrocarburo clorado puede reducir el contenido de cafeína a 0.02% pero altera marcadamente el aroma del café tostado.

La torrefacción causa una pérdida progresiva del 10 - 20%,
principalmente por sublimación sin cambios químicos. Los polvos de café instantáneo pueden contener 5% de cafeína, o más si son usados granos de café Robusta.

La cafeína frecuentemente es determinada por espectrofotometría Ultravioleta, pero se deben tomar precauciones para evitar interferencias por otros productos de la torrefacción. También se pueden usar la cromatografía en capa fina y la cromatografía gaseosa para determinar la cafeína.

La trigonelina, una metil betaina de la piridina (Ver Figura No. 1) se halla a mayor nivel en los Arabicas (1.0 - 1.2%) que en los Robustas (0.6 - 0.74%) o Libericas (0.2 - 0.3%). La trigonelina es de particular interés debido a que está íntimamente relacionada con la niacina. La torrefacción causa una pérdida progresiva del 50 - 80%, aumentando la niacina por desmetilación, y en tostados fuertes la piridina por descarboxilación posterior. La trigonelina y la niacina son fácilmente solubles en agua y pasan al polvo de café instantáneo y a la bebida, de tal manera que una taza típica de café puede suministrar una décima del requerimiento diario de niacina recomendado.

4) Lípidos:

Tradicionalmente el contenido en lípidos se determina por extracción con un solvente adecuado, evaporación del solvente y peso de residuo. El uso sucesivo de solventes incrementando su polaridad permite la extracción de fracciones lipídicas de polaridad creciente.

La eficiencia de la extracción depende del tiempo y del tamaño de las partículas. Se ha reportado que una extracción simple con etanol de café verde molido produce 15.8% de los lípidos totales, pero remoliendo y re-extrayendo produce 17.5% y una determinación refractométrica con bromo-naftaleno indica 17.9%.

El Coffea sp. ha sido dividido en 3 categorías con base a su contenido graso y los datos reportados en la literatura indican que los Arabicas contienen 12-18%, Los Robustas 4-13%, y los Libericas 11-12%. El aceite de café es considerado un importante vehículo para el aroma del café tostado pero es poco el aceite que pasa al café instantáneo (aproximadamente 1.5%). El café agotado tiene aproximadamente 12.5% de aceites.
FIGURA No. 1

ALCALOIDES

Esqueleto de la Purina

R_1 R_2 R_3

CH_3 CH_3 CH_3 Cafeína
H CH_3 CH_3 Teobromina
CH_3 CH_3 H Teofilina

Trigonelina
Lípidos saponificables:

Los trigliceridos son los principales constituyentes de ésta fracción, de un 70-80% de los lípidos crudos de los granos verdes frescos. Los ácidos grasos libres están presentes a un nivel de 0.5 - 3.0% en granos verdes de buena calidad, pero aumenta a casi 20% en granos de baja calidad.

Se ha reportado que la torrefacción incrementa los ácidos grasos libres por 30-400%. El valor superior posiblemente indica aumento de la actividad de la lipasa durante las primeras etapas de la torrefacción.

Los constituyentes de los ácidos grasos han sido determinados por cromatografía gas-líquido. Hay poca diferencia entre Arábicas y Robustas o entre granos verdes o tostados, pero si existe alguna diferencia en la distribución de ácidos grasos entre trigliceridos, esteres, diterpenos, y esteres triptamina.

Un reporte de la literatura indica que el ácido linoleico representa 37-50% del total de los ácidos grasos, el palmitico 23-35%, el oleico 9-14%, el linolenico 1-5% y el araquídico 1-4%.

El mirístico y el Behenico han sido reportados a niveles sobre 0.6%, en algunos casos junto con trazas de palmitoleico, gado-leico, lignocérico, el margarico y el decadienoico.

Los valores de Yodo para el aceite del grano verde han sido reportados en el rango de 82-102. Los para el aceite del grano tostado son más del 7% mayores, pero los enlaces dobles adicionales no están necesariamente asociados con los constituyentes lipídicos puesto que se conocen muchos productos insaturados de la torrefacción.

Otras características del aceite son los valores de saponificación, 180-189; los índices de refracción (25 grados C), 1.4700-1.4744, y los valores de Bencidina, 0.9 - 1.1 para los granos verdes y tostados.

El valor peróxido cae aproximadamente la mitad durante la torrefacción a un valor de 42 meq/Kg, pero el valor del ácido tiobarbiturico se dobla. Los valores peróxido y de Bencidina son reducidos por la descafeinización, pero el valor del ácido tiobarbiturico aumenta.
Se ha reportado que el aceite del café contiene en promedio 4% de Fosfátidos crudos. Después de que los granos verdes han sido extraídos con hexano, han sido obtenidas fracciones cada vez más polares por extracción sucesivamente con cloroformo (0.7-0.9% del grano) y metanol (2.6 - 3.2% del grano).

Los lípidos que pasan a la bebida de café y al café instantáneo son probablemente derivados de éstas fracciones relativamente polares.

6) Lípidos insaponificables:

Es esta fracción aquellos lípidos que no son solubles en agua después del tratamiento con alcali alcohólico. Ha sido reportado que el aceite de los cafés Arabica y Robusta contienen entre 7 y 20% de material insaponificable. También ha sido reportado que este raro alto contenido de material insaponificable es responsable por el punto de fusión bajo del aceite de café (8° C.) y que la remoción de esta fracción da trigliceridos neutros con un rango de fusión de 34-36 grados C.

Dos diterpenos, el caffestol y el kahweol, forman 40% y 20% respectivamente de la fracción insaponificable. Están presentes casi completamente como esteres de ácido graso. Sus estructuras se muestran en la figura No.2.

Los esterolenos representan en promedio 20% de los insaponificables y el remanente está compuesto de serotonininas (3-6%), hidrocarburos alifáticos de cadena larga incluyendo nonacosano y pigmentos.

Está ahora claro que los esterolenos del aceite de café son muy similares a los de otras plantas consistiendo en sitosterol (53 - 55%), campesterol (16-18%), Stigmasterol (22-28%) y al menos diez compuestos en menor cantidad representando el 7%. Las estructuras de los principales componentes se puede estudiar en la Figura No.3. La relación total de esterolenos del esterol a esterolenos libres es aproximadamente 2:1 excepto rangos de 6:1 para cicloartenol y 2:3 para el Stigmasterol.

Las serotonininas son esteres de ácidos grasos de la 5-hidroxitriptamina (Ver Figura No.4) y han sido reportadas en la capa cero- sa de la superficie del grano verde a niveles de 0.04 - 0.14%.
LIPIDOS INSAPONIFICABLES - DITERPENOS

15, Abieten - 13 β. 19 diol
Figura No. 3

LIPIDOS INSAPONIFICABLES - Esteroles

\[
\text{Sitosterol } R = \text{CH}_2 - \text{CH}_3
\]

Campesterol \(R = \text{CH}_3 \)

Stigmasterol \(R = \text{CH}_2 - \text{CH}_3 \) con doble enlace en \(C_{22} \).

Los esteroides se dividen en dos grupos. \(C_1 \) Metil y \(C_1 \) dimetil.

Los miembros de ambos grupos difieren en sus sustituyentes a \(C_9 \) y \(C_{10} \) y \(C_{21} \) y el número y posición de sus enlaces dobles.
FIGURA No. 4

LIPIDOS INSAPONIFICABLES - Serotoninas

RO

\[\text{CH}_2\text{CH}_2\text{NH}_2 \]

5-Hidroxitriptamina
El contenido disminuye durante el almacenamiento y luego durante la torrefacción a 0.01 - 0.04%: La descafeinización mediante solvente o tratamiento con vapor también reduce el contenido.

Se ha reportado que las serotoninas causan desórdenes gástricos y han sido patentados procesos para su remoción de los granos de café. Los ácidos grasos presentes en los esteres son todos saturados oscilando en la longitud de la cadena de C₁₆ a C₂₄.

7) Compuestos Fenólicos:

El principal grupo de compuestos fenólicos hallados en el grano de café verde es conocido como los ácidos clorogénicos, un nombre otorgado en 1846.

Los ácidos clorogénicos incluyen al menos 10 compuestos íntimamente relacionados, y otras sustancias similares han sido halladas en otras plantas.

Estos ácidos no fueron fácilmente caracterizados hasta la aparición de métodos sofisticados de separación y métodos de identificación como las Espectroscopia Infrarroja, Resonancia magnética nuclear y Espectrometría de masas.

Los primeros reportes eran confusos debido a que consideraban como compuestos puros a mezclas de varios ácidos clorogénicos y esta confusión era aumentada por el uso de una nomenclatura trivial e inconsistente. El inexperto debe tener cuidado por que algunos nombres triviales han sido usados para describir más de un compuesto.

Paraclarificar la situación lo máximo posible, en la Tabla No. 2 se muestran los nombres triviales, la fecha en que se comenzaron a usar y el correspondiente nombre sistemático.

Los ácidos clorogénicos son mono o diesteres de un ácido cinámico y el ácido quínico (Ver figura No. 5). En el grano de café ha sido confirmada la presencia del ácido quínico derivado del ácido cafeíco y el ácido ferúclico.

La esterificación es vía de uno de los tres grupos hidroxilo vecinales del ácido quínico y el grupo carboxílico del ácido cinámico, permitiendo 3 ácidos mono-cafeoilquínicos, 3 ácidos mono Feruloilquinicos y 3 ácidos dicafeoilquínicos, todos los cuales
FIGURA No. 5

COMPUESTOS FENOLICOS

Fígureto del Acido Cinamico

Acido Quinico

Escopoletina

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>Composición</th>
</tr>
</thead>
<tbody>
<tr>
<td>COOH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>Acido 5 hidroxicinamico</td>
</tr>
<tr>
<td>COOH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>Acido cafeico</td>
</tr>
<tr>
<td>COOH</td>
<td>OCH$_3$</td>
<td>OH</td>
<td>H</td>
<td>Acido ferulico</td>
</tr>
<tr>
<td>COOH</td>
<td>OCH$_3$</td>
<td>OH</td>
<td>OCH$_3$</td>
<td>Acido sinapico</td>
</tr>
<tr>
<td>CHO</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>4-hidroxicinamaldehido</td>
</tr>
<tr>
<td>CHO</td>
<td>OCH$_3$</td>
<td>OH</td>
<td>H</td>
<td>Coniferaldehido</td>
</tr>
<tr>
<td>CHO</td>
<td>OCH$_3$</td>
<td>OH</td>
<td>OCH$_3$</td>
<td>Sinapaldehido</td>
</tr>
<tr>
<td>NOMBRE TRIVIAL</td>
<td>NOMBRE SISTEMATICO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banda 510 (1958)</td>
<td>Acido 4-cafeoilquinico (1963)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acido Clorogénico (1846)</td>
<td>Acido 3-cafeoilquinico (1932)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acido criptoclorogénico</td>
<td>Acido 4- cafeoilquinico (1963)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustancia de Hauschid</td>
<td>Lactona Acido 5-cafeoilquinico (1963)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acido Isochlorogénico, Barnes</td>
<td>Postulado el ácido 5-cafeoilquinico en 1950. Fué refutado, pero fué postulado el ácido 4-cafeoilquinico en 1955. En 1964 se reportó, consistía principalmente en tres fracciones:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1950)</td>
<td>Acido 3,4 - dicafeoilquinico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acido Isochlorogénico A</td>
<td>Acido 3,5 - dicafeoilquinico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acido Isochlorogénico B</td>
<td>Acido 4,5 - dicafeoilquinico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acido Isochlorogénico C</td>
<td>Acido 5- cafeoilquinico (1963)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acido Neoclorogénico (1953)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acido Seudoclorogénico (1955)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: Se reportó que el ácido seudoclorogénico es una mezcla de los ácidos cafeoil- y/o dicafeoilquinico.
han sido reportados en los granos de café verde. También ha sido reportada al menos al ácido cafeoilferuloylquinico mezclado. Ha sido mostrado por resonancia magnética nuclear que la mitad del ácido quinico tiene la configuración en silla con un grupo carboxilo ecuatorial y que puede formar una lactona con el grupo hidroxilo 3 cuando este no está esterificado con un ácido cinámico. En el grano de café verde se encuentra un complejo 1:1 molal de cafeína con el ácido 3-cafeoilquinico. Un reporte reciente ha mostrado que la cafeína se une al residuo de ácido cafécico.

Los granos de Robusta verdes contienen de 7 a 10% de ácidos clorogénicos mientras que los Arabicas contienen 5.5 - 8%.

Los ácidos cafeoilquinicos forman la mayor fracción (Arabicas 5.5 - 7%, Robustas 8%) seguidos por los ácidos dicafeoilquinicos (Arabicas 0.6%, Robustas 1.76%) y los ácidos feruloilquinicos (Arabicas 0.25, Robustas 0.6 - 1.2%).

Hay muy pocos datos cuantitativos para el contenido individual de isómeros pero está claro que el ácido 3-cafeoilquinico es el mayor componente de todos, y el ácido 3-feruloilquinico es el principal derivado del ácido ferulico.

Se ha observado que la torrefacción causa una pérdida progresiva y en definitiva severa de los ácidos mono y dicafeoilquinicos, pero parece que los ácidos feruloilquinicos son por el contrario más estables al calor y pueden convertirse en la principal fracción de los ácidos clorogénicos en granos de Robusta fuertemente tostados.

Una cantidad considerable de los ácidos clorogénicos y/o sus productos de degradación por la torrefacción se unen a las proteínas para formar ácidos húmicos de alto peso molecular.

La escopoletina, una cumarina relacionada en estructura al ácido ferulico (Ver figura No.5) ha sido reportada en los Robustas verdes a un nivel de 0.3 - 0.4 mg%, unas 4 veces la cantidad hallada en los arabicas.

La esculetina, la cumarina correspondiente al ácido cafécico, no ha sido reportada.

Ha habido una identificación tentativa de 3 cinamaldehídos en los arabicas verdes (coniferaldehído, Sinapaldehído y un mono-hidro
xicinamaldehído) y solo del coniferaldehído en los robustas verdes.

8) **Ácidos alifáticos:**

Solo han habido 2 reportes recientes, pero al examinar la literatura anterior se concluye que los granos de café verde contienen los ácidos acético, butírico, cítrico (0.5%), mático (0.5%), oxálico (0.2%), propionico, piruvico, quinico, tartárico (0.4%), y valérico.

Se reportan pérdidas progresivas durante la torrefacción que alcanzan por ejemplo un 33-56% del cítrico, un 16-40% del mático, un 40% del oxálico, un 25% del tartárico en tostados severos. La destrucción es particularmente notable después de pérdidas de pesos totales de 12-13%. Recientemente se ha reportado que el contenido máximo de ácidos alifáticos corresponde a una pérdida de peso total de aproximadamente 15% y esto es consistente con los reportes de los valores de pH de la bebida mínimos ocurridos a esta severidad de tostado.

Ahora se cree que los valores de pH de la bebida más altos obtenidos en el tostado más severo se debe a la destrucción de ácidos fenólicos antes que a la destrucción de los ácidos alifáticos. Se ha observado una destrucción rápida de los ácidos clorogénicos más allá de pérdidas de peso totales del 15%.

Además de los ácidos mencionados arriba, se ha reportado que el café tostado contiene los ácidos citraconico fúrmico fumarico, 2-Furoico, isovalérico, itaconico, láctico, maleico, mesaconico, y 2 aún nó identificados.

Los ácidos Fumárico y 2-Furoico probablemente son producidos del ácido mático y carbohidratos respectivamente, y los ácidos citraconico, itaconico y mesaconico se derivan probablemente del ácido cítrico mediante deshidratación.

Se ha reportado que el valor pH de la bebida tiene un efecto marcado sobre el sabor y la calidad de la bebida. Los valores de pH preferidos fluctuan entre 4.95 y 5.20. El valor pH de la bebida influuye sobre el aroma al determinar las proporciones de volátiles ácidos y básicos en el espacio de cabeza. Los valores de pH altos en la bebida dan aromas muy desagradables.

9) **Carbohidratos:**
a) Oligosacáridos: Muchos reportes sugieren que los granos de café verde contienen sucrosa en el rango de 5-8% pero también se han publicado valores más bajos como 1.7 - 2.8%.

Los Arabicas contienen más que los robustas. En muchas muestras se han encontrado pequeñas cantidades de glucosa libre, 0.5 - 1.0%, pero la fructuosa libre es menos común.

También están presentes la Rafinosa y la Stachyosa las cuales pueden haber sido determinadas como sucrosa. Los Robustas contienen más que los Arabicas; rafinosa 45 mg % y 23-29 mg % respectivamente y la Stachyosa 70 mg % y 35-44 mg % respectivamente.

La torrefacción causa una pérdida progresiva y eventualmente severa de los oligosacáridos. Algunos investigadores reportan pequeñas cantidades de sucrosa remanente, 1.5%, mientras que otros sugieren que es destruida completamente.

No ha habido reportes sobre la sobrevivencia de la rafinosa o la Stachyosa pero muchas muestras producen glucosa (hasta 1%), Fructuosa (hasta 1%), arabinosa (hasta 0.1%) y ocasionalmente trazas de galactosa. Hay un reporte de la maltosa (0.2 - 0.3%). Se ha reportado que la extracción de los granos tostados no causa hidrolisis de oligo - o polisacáridos; pero un reporte de la arabinosa (0.4 - 2.5%), galactosa (0.2 - 0.9%) y manosa (0.1 - 1.0%) en los cafés instantáneos comerciales sugiere que la hidrolisis ocurre al menos bajo condiciones comerciales. También se han reportado trazas de glucosa (hasta 0.3%), Fructuosa (hasta 0.5%), ribosa y xilosa.

El contenido en azúcar total de los polvos de café instantáneos Rusos es de 9-10%.

b) Polisacáridos: La hidrolisis ácida de los granos de café verdes, de los cuales se han removido los oligosacáridos y el exámen cromatográfico de los hidrolizados muestran que la galactosa, la glucosa, la manosa, la arabinosa, la xilosa, la rhamnosa y el ácido urónico están presentes en la forma polimérica.

c) Polisacáridos estructurales: La presencia de la celulosa se ha demostrado por su solubilidad en cuproamonia y por su
conversión a octa-acetato de beta-cellobiosa. Los granos verdes contienen aproximadamente 5%. Las sustancias pecticas de las paredes celulares primarias son una mezcla/combina- ción química de un arabano, un galactano y un galacturonano que está parcialmente esterificado con metanol.

Tradicionalmente tal material es considerado soluble en agua hirviendo de la que puede ser precipitado (junto con mucilaga- gos si están presentes) mediante la adición de etanol hasta una concentración final del 80%. Las sustancias pecticas tam- bién se pueden extraer mediante oxalo de amonio diluido o ácido diluido (pH 2.5). Las fracciones obtenidas de los granos de café verde por estos métodos parecen ser muy si- milares en composición. Los arabicas y los Robustas conte- nían 0.9% y 1.5% respectivamente de una fracción soluble en ácido que por hidrólisis produjo Rhamnosa (1 parte), arabinosa (3 partes), manosa (2.7 partes) y galactosa (1.9 par- tes). Una fracción soluble en oxalo dió en adición ácido galacturónico y otro constituyente. Se han usado extracciones con agua caliente en varias investigaciones que produce de 3-4% para los arabicas y Robustas y relaciones galactosa: arabinosa en el rango de 2:3 a 2:5. Otros investigadores usando procedimientos similares aparentemente han obtenido fracciones con relaciones galactosa : arabinosa de 2 ó 3:1.

Las fracciones solubles en agua caliente siempre contenían manosa y algunas veces glucosa.

Las hemicelulosas de los tejidos no lignificados están típica mente compuestos de arabinosa, pero también pueden estar presentes la xilosa, galactosa y el ácido galacturónico.

Estos compuestos se encuentran asociados con la celulosa y se piensa son intermedios en la síntesis de la celulosa.

Las hemicelulosas son insolubles en agua y son extraídas co- munmente con hidróxido de sodio al 17.5% (o hidróxido de po- tasio al 24%), pero se puede obtener algún fraccionamiento usando inicialmente alcalí más débil. Una extracción en hidró- xido de Potasio al 10% produjo una fracción que contenía arabi- nosa (1 parte), galactosa (2 partes), manosa (6 partes) y glucosa (2 partes). La extracción subsecuente de los mismos granos en hidróxido de sodio al 18% separó una fracción que contenía 95% de manosa.
Han sido precipitadas fracciones ricas en manosa del extracto al complejarlas con sales de cobre a valores de pH alcalinos.

Los polisacáridos del café tostado: La torrefacción de los granos de arabica causa un incremento progresivo de los polisacáridos solubles en agua, oscilando de 50 a 200% dependiendo de la variedad. El contenido de manosa de estas fracciones aumentó considerablemente con el progreso de la torrefacción y eventualmente alcanzó aproximadamente 70%. El polisacárido de degradación se incrementó en el rango de 25 a 50% y la holocelulosa cayó a aproximadamente la mitad cuando se compara con el grano verde.

Ha sido aislado un arabinogalactano de un polvo de café instantáneo a nivel del 5%. Tenía una relación galactosa: arabinosa de 25:2 con un total de 11 residuos por molécula. Se sugirió que el más bajo contenido de arabinosa comparado con polisacáridos similares del grano verde fue debido a la pérdida de unidades de arabinosa fácilmente unidas durante la torrefacción y la extracción.

Han sido aisladas ciertas fracciones de polisacáridos de los ácidos húmicos del café tostado.

10) Aminoácidos libres:

Esta fracción puede formar hasta 2% en los granos de Arabica. Los aminoácidos usualmente hallados en los tejidos de la planta se conocen que están presentes en el café, y también trazas de aminoácidos poco comunes y poco caracterizados.

Los aminoácidos son destruidos completamente por la torrefacción y se ha reportado que son de considerable importancia junto con un péptido sin caracterizar en la producción del aroma del café tostado.

11) Proteínas:

El contenido en proteína cruda ha sido reportado en 11-13% calculado de las determinaciones de nitrógeno por el método Kjeldahl y el factor de conversión usual de 6.25. Bajo tales circunstancias se puede esperar alguna contribución del nitrógeno alcalóide. La proteína soluble en agua (3% del grano) tiene un contenido de nitrógeno
del 15.4% indicando que un factor de conversión de 6.5 es más apropiado para esta fracción.

El punto isoelectróico fue reportado a un pH 4.6 - 4.7. También fue confirmado un bajo contenido de aminoácidos básicos. Han sido liberados los 18 aminoácidos comunes mediante hidrólisis y en algunos casos han sido reportados datos cuantitativos.

La electroforesis con gel de acrilamida de muchas variedades de arábica y robusta produjo 12 fracciones con solo pocas diferencias entre especies y variedades.

La torrefacción causa ligera pérdida del Nitrógeno Kjeldahl pero reduce considerablemente el contenido de proteínas solubles en agua. El análisis de los aminoácidos ha mostrado que los aminoácidos individuales unidos a proteína muestran diferentes grados de sensibilidad a la torrefacción. Ha sido reportado que el ácido glutámico, la leucina, la valina, la fenilalanina y la prolina se incrementan con la torrefacción; la metionina, cisteína, cistina, lisina, serina y teonina son considerablemente destruidos por la torrefacción. Posiblemente es importante notar que aquellos aminoácidos que son destruidos no tienen cadenas alifáticas simples, mientras que los que se incrementan (con excepción del ácido glutámico) tienen una cadena alifática. El "Incremento" en este contexto es probablemente un nombre inadecuado, indicando estabilidad si la razón es tomada de la pérdida total de torrefacción.

12) Ácidos Humicos:

Tradicionalmente el término "Acidos Humicos" se ha usado para describir compuestos complejos de peso molecular elevado, producidos en el suelo por la descomposición de material vegetal.

El término ha sido adoptado para describir cierta fracción con alto peso molecular de los granos de café tostado que se producen por interacción de las proteínas nativas, polisacáridos y algunos compuestos de bajo peso molecular, particularmente los ácidos clorogénicos.

Aún no está claro si la unión de éstos compuestos es realmente
química o física.

Los residuos de polisacáridos y proteínas de los ácidos húmicos han sido determinados por varios investigadores, pero los datos presentados en esta sección han sido obtenidos mediante procedimientos cuyo fin era aislartos específicamente.

La purificación de los ácidos húmicos solubles en agua se ha realizado mediante cromatografía de filtración por gel o por dialisis.

Se han reportado productos del 12-15% para compuestos con pesos moleculares entre 5000 y 50000.

Las hidrólisis ácida, alcalina y enzimática y el examen cromatográfico han dado como resultado la existencia de fracciones de proteína-polisacárido y proteína - ácidos clorogénicos.

Es estas fracciones se han encontrado hasta 18 aminoácidos, un peptido pequeño, galactosa, manosa y Arabinosa, 12 fenoles (de los ácidos clorogénicos)

Se cree que los ácidos clorogénicos se degradan durante la torrefacción y que sus productos de degradación junto con algunos ácidos clorogénicos intactos, se unen a las Proteínas.

13) El complejo Aroma:

El aroma de los granos de café verde es débil y difícil de describir; la torrefacción es escencial para la producción del aroma que reconocemos como del café.

Han sido identificados casi 100 compuestos de los constituyentes volátiles de los granos de café verde, los cuales también han sido encontrados en los granos de café tostados. Las pérdidas durante la torrefacción se restringen a algunos esteres etílicos.

El estudio del aroma del café tostado ha sido muy popular en los últimos 20 años y han aparecido muchos reportes.

Se han identificado más de 400 compuestos químicos en los volátiles del café tostado, de los cuales menos de 50 se conocían desde antes de 1929 (en el café) y menos de 75 antes de 1960.
Muchos de estos compuestos están en muy pequeñas cantidades (trazas) y cada día se mejoran las técnicas de análisis y con ello la exactitud de los datos y su cuantificación.

Es muy poco probable que todos los compuestos que han sido identificados contribuyan de una manera igual al aroma del café. La potencia de un compuesto que presenta aroma generalmente se expresa como su valor umbral (La concentración a la cual justamente es percibido) mientras que su importancia o valor del olor se expresa como la relación entre su concentración en el alimento (o en el espacio de cabeza) y su valor umbral. Tales valores solo existen para unos cuantos de los compuestos.

Ningún compuesto hasta ahora se ha aislado que tenga un aroma como a café reconocible inmediatamente, aunque se han sugerido como de significado especial en el aroma cierta clase de compuestos: Por ejemplo los compuestos carbonílicos moderadamente volátiles (puntos de ebullición entre 100 y 220 grados C) debido a que su remoción de un concentrado de aroma de café deja un residuo sin el total del aroma del café.

También se ha reportado que los compuestos fenólicos moderadamente volátiles hacen una contribución importante pero que los compuestos con Nitrógeno son menos importantes y la fracción de ácidos monocarboxilicos es de menor importancia.

Recientemente se ha dado una atención particular a las pirazinas en muchos alimentos y los datos cuantitativos indican que algunos están presentes en el café a niveles que exceden su valor umbral y por lo tanto tienen un valor de olor alto. La importancia de éstos compuestos se nota en el aumento de patentes para adicionarlos a los polvos de café instantáneo con el fin de mejorar el aroma. Las pirazinas contienen átomos de Nitrógeno que pueden ser protonados por ácidos haciéndolo más soluble en agua, reduciendo de esta manera la concentración de pirazina en los volátiles del espacio de cabeza.

La adición de alcali al café tostado y molido de manera que son volatilizadas las bases débiles (incluyendo las pirazinas) producen un aroma desagradable. Los granos de café Robusta de baja calidad contienen una cantidad mayor de estas bases débiles que los granos Arabica de superior calidad.
La pérdida de atracción está casi siempre relacionada con el aroma modificado por neutralización. Los datos con relación a los volátiles nitrogenados indican claramente la compleja naturaleza del aroma del café. Las pirazinas son deseables en el aroma del café hasta cierta concentración, pero se debe mantener un balance con los demás componentes.

Además, un alto nivel de bases, junto con un nivel de volátiles ácidos reducidos causan una baja en la aceptabilidad.

Los volátiles que contienen azufre son importantes en el aroma de muchos alimentos pero su posición en el aroma del café no está clara. Varios investigadores han atribuido importancia al furfuril mercaptano y ha sido empleado para enriquecer el sabor de las bebidas de café.

Más recientemente se le ha dado una atención similar al trans-2-nonenal y ya existen patentes que usan compuestos relacionados con el cis-noneneno para mejorar el sabor del café instantáneo.

La mayoría de las patentes en este campo son usadas para mejorar las pérdidas causadas por los procesos de fabricación de cafés instantáneos o descafeinizados o simplemente guardados en contacto con la atmósfera.

Una investigación reciente midió los volátiles "totales" del café por cromatografía gas-líquido, los carbonilos del aroma por un método espectrofotométrico, y los componentes oxidables con permanganato (Número de aroma) de varios productos del café.

Los valores experimentales para el café tostado lo tomaron como base (por ejemplo 100%). La molienda causó una pérdida del 2% de los carbonilos, 14% de los volátiles totales y disminuyó un 18% el número de Aroma.

La descafeinización causó reducciones de 56%, 85% y 29% respectivamente y la producción de café instantáneo originó reducciones de 80%, 86% y 47% respectivamente.

Es de particular interés notar que no solo se pierden los constituyentes del aroma mediante estos tratamientos sino que las pérdidas son diferentes para las varias categorías de los constituyentes del aroma, indicando un avance desde el aroma balanceado a uno no balanceado.
Es una práctica bastante común recuperar los aromas perdidos durante estos procesos y retornarlos al polvo de café instantáneo.

Es importante hacer notar que los mismos compuestos volátiles son encontrados independentemente de la variedad del grano verde empleado, las diferencias en el aroma aparentemente dependen de las diferencias en las proporciones de los volátiles presentes, antes que de la presencia o ausencia de un componente clave.

14) Los precursores del aroma:

Recientemente se ha reportado la participación de los azúcares, aminoácidos libres y de la trigonelina en la producción del aroma. Otros investigadores han reportado que los ácidos clorogénicos y la proteína pueden también participar.

Generalmente se expresa que las Reacciones de Maillard (la interacción de un grupo amoniacido neutro y un grupo carbonilo) y las degradaciones de Strecker (la descarboxilación de un aminoácido para producir un aldehído con un átomo de carbono menos) originan los volátiles del aroma pero también existen otras reacciones menos bien definidas que son importantes.

Es fácil asumir que si un componente del grano verde es destruido considerablemente durante la torrefacción por lo tanto producirá compuestos que contribuyen al aroma. Esto no es necesariamente así; los productos pueden no ser volátiles y hacer una contribución directa al aroma insignificante aunque puede contribuir indirectamente (quizá influyendo sobre el valor del pH) o contribuir al sabor total. En contraste, un componente del grano verde que sufre poca o ninguna pérdida detectable durante la torrefacción podría hacer una contribución importante al complejo del aroma, que forma solo unos pocos microgramos por kilogramo de granos tostados.

Un análisis de los sistemas de simulación de la torrefacción ha indicado que la pirolisis de azúcares y polisacáridos produce volátiles que incluyen carbonilos alifáticos, alcoholes y ácidos, furanos y cetonas cíclicas. Una interacción subsecuente o simultánea con fragmentos nitrogenados puede producir pirazinas, piridinas, pirroles y en algunos casos imidazoles. Las piridinas también pueden formarse de la trigonelina, y se pueden es-
Se ha sugerido que los compuestos fenólicos volátiles se derivan de la degradación de los ácidos clorogénicos. La pirolisis de los aminoácidos fenólicos solos o con grasas, y la pirolisis de ligninas, celulosa y azúcares pueden también producir fenoles volátiles. La fragmentación de los esterolos o los diterpenos de los granos de café puede ser los precursores de varios hidrocarburos alifáticos o alicíclicos que han sido reportados. La degradación de triglicéridos, particularmente los insaturados es un posible origen de los alcoholes alifáticos, ácidos e hidrocarburos.

Se pueden esperar que diferencias en las proporciones de los precursores del aroma alteren la contribución relativa de las muchas rutas que conducen a los volátiles del aroma (y los productos de degradación no volátiles). Tales diferencias en el contenido de los precursores probablemente conducen hacia la explicación de las diferencias en la calidad de las bebidas producidas de la misma variedad de granos cultivados y procesados en diferentes regiones, y habrán diferencias similares pero mayores entre las especies. Por comparación con el fruto y otras semillas es razonable asumir que la composición de los granos de café verde cambiará con el crecimiento de la madurez botánica.

No es posible definir la composición de un grano de café verde de alta calidad, pero puesto que los granos de Arabica son generalmente de una mayor calidad que los Robusta, los datos presentados en la Tabla No. 3 sugieren que el alto contenido de azúcar y de grasa y los bajos contenidos en ácidos clorogénicos y cafeína predisponen a una alta calidad. Los contenidos altos en azúcar y grasa simplemente incrementan la producción de algunos volátiles de aroma agradable, o pueden modificar el aroma de alguna manera menos obvia, por ejemplo, descomponiéndose exotérmicamente y aumentando así la temperatura y la presión internas logradas durante la torrefacción.

Esta extrapolación conjetural concluye la revisión, y muestra
TABLA No. 3

COMPOSICION QUIMICA DEL CAFE (% dmb)

<table>
<thead>
<tr>
<th>COMPONENTE</th>
<th>ARABICA VERDE</th>
<th>ARABICA TOSTADO</th>
<th>ROBUSTA VERDE</th>
<th>ROBUSTA TOSTADO</th>
<th>POLVO DE CAFE INSTANTANEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minerales</td>
<td>3.0 - 4.2</td>
<td>3.5 - 4.5</td>
<td>4.0 - 4.5</td>
<td>4.6 - 5.0</td>
<td>9.0 - 10.0</td>
</tr>
<tr>
<td>Cafeína</td>
<td>0.9 - 1.2</td>
<td>1.0</td>
<td>1.6 - 2.4</td>
<td>1.2 - 2.0</td>
<td>4.5 - 5.1</td>
</tr>
<tr>
<td>Trigonelina</td>
<td>1.0 - 1.2</td>
<td>0.5 - 1.0</td>
<td>0.6 - 0.75</td>
<td>0.3 - 0.6</td>
<td></td>
</tr>
<tr>
<td>Lípidos</td>
<td>12.0 - 18.0</td>
<td>14.5 - 20.0</td>
<td>9.0 - 13.0</td>
<td>11.0 - 16.0</td>
<td>1.5 - 1.6</td>
</tr>
<tr>
<td>Acidos Cierogéncicos</td>
<td>5.5 - 8.0</td>
<td>1.2 - 2.3</td>
<td>7.0 - 10.0</td>
<td>3.9 - 4.6</td>
<td>5.2 - 7.4</td>
</tr>
<tr>
<td>Acidos Alifáticos</td>
<td>1.5 - 2.0</td>
<td>1.0 - 1.5</td>
<td>1.5 - 2.0</td>
<td>1.0 - 1.5</td>
<td></td>
</tr>
<tr>
<td>Oligosacaridos</td>
<td>6.0 - 8.0</td>
<td>0.0 - 3.5</td>
<td>5.0 - 7.0</td>
<td>0.0 - 3.5</td>
<td>0.7 - 5.2</td>
</tr>
<tr>
<td>Polisacaridos totales</td>
<td>50.0 - 55.0</td>
<td>24.0 - 39.0</td>
<td>37.0 - 47.0</td>
<td>2 - 6.5</td>
<td></td>
</tr>
<tr>
<td>Aminoácidos</td>
<td>2.0</td>
<td>0.0</td>
<td>2.0 - 0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Acidos Humicos</td>
<td></td>
<td>16.0 - 17.0</td>
<td>16.0 - 17.0</td>
<td>15.0</td>
<td></td>
</tr>
</tbody>
</table>

Se debe tener en cuenta que estos valores son extractados de muchas fuentes. Por lo tanto los valores han sido obtenidos para muchas variedades de granos de café y obtenidos mediante una serie de técnicas. En donde es posible los valores para los granos de café tostados se basan en una pérdida por tostación de peso, de aproximadamente 20%.
todo lo que se ha aprendido (principalmente en la última década) acerca de la composición de los granos de café verdes y tostados más sin embargo aún no es posible definir detalladamente como influyen la composición y el procesamiento sobre la calidad de la bebida.
BIBLIOGRAFIA

Clifford, M.N.
The Composition of green and Roasted coffee beans.
Process Biochemistry, March 1975, P. 20-23 and May 1975, P. 13-16